
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023 2767

Simeuro: A Hybrid CPU-GPU Parallel Simulator
for Neuromorphic Computing Chips

Huaipeng Zhang , Nhut-Minh Ho , Dogukan Yigit Polat , Peng Chen , Mohamed Wahib ,
Truong Thao Nguyen , Jintao Meng , Rick Siow Mong Goh , Satoshi Matsuoka , Tao Luo ,

and Weng-Fai Wong , Senior Member, IEEE

Abstract—With the success of deep learning, there have been nu-
merous efforts to build hardware for it. One approach that is gain-
ing momentum is neuromorphic computing with spiking neural
networks (SNNs), which are multiplication-free and open the pos-
sibility of using analog computing via novel technologies. However,
to design effective and efficient hardware for such architectures, a
fast and accurate software simulator is key. This article presents
Simeuro, a fast and scalable system-level simulator for SNN models
used in neuromorphic accelerators. The simulator uses spike-level
details and configurable architectural constraints that are indepen-
dent of the underlying hardware implementation. Simeuro sup-
ports a wide range of features including analog computing, novel
memory (currently, RRAM is supported), and a full network-on-
chip. The simulator can provide detailed simulation results such
as routing statistics, energy consumption, delay, and accuracy of
arbitrarily defined SNN architectures. Our simulator leverages
a CPU-GPU hybrid environment to expedite the simulation by
scaling out to multi-nodes equipped with multi-GPUs. We are able
to conduct core simulations for a system-scale SNN chip of 20,000
neuromorphic cores on up to 512 A100 GPUs in a few minutes.

Index Terms—Neuromorphic computing, chip simulation, deep
learning.

Manuscript received 22 November 2022; revised 25 May 2023; accepted
24 June 2023. Date of publication 3 July 2023; date of current version 22 August
2023. This work was supported in part by the Singapore Government’s Research,
Innovation and Enterprise 2020 Plan (Advanced Manufacturing and Engineering
domain) under Grants A1687b0033 and A1892b0026. This paper was based on
results obtained from JPNP20006 project, commissioned by the New Energy
and Industrial Technology Development Organization (NEDO). Recommended
for acceptance by P. Bangalore. (Corresponding author: Tao Luo.)

Huaipeng Zhang, Rick Siow Mong Goh, and Tao Luo are with the In-
stitute of High Performance Computing (IHPC), Agency for Science, Tech-
nology and Research (A*STAR), Singapore 138632 (e-mail: zhang_huaipeng
@ihpc.a-star.edu.sg; gohsm@ihpc.a-star.edu.sg; tluo001@e.ntu.edu.sg).

Nhut-Minh Ho, Dogukan Yigit Polat, and Weng-Fai Wong are with the School
of Computing, National University of Singapore, Singapore 119077 (e-mail:
minhhn@comp.nus.edu.sg; yigit@u.nus.edu; wongwf@nus.edu.sg).

Mohamed Wahib and Satoshi Matsuoka are with the RIKEN Center for
Computational Science, Kobe 650-0047, Japan, and also with the Tokyo Insti-
tute of Technology, Tokyo 152-8550, Japan (e-mail: mohamed.attia@riken.jp;
matsu@acm.org).

Peng Chen is with the, and also with the National Institute of Advanced
Industrial Science and Technology, Japan, RIKEN Center for Computational
Science, Tokyo 100-8921, Japan (e-mail: chin.hou@aist.go.jp).

Truong Thao Nguyen is with the National Institute of Advanced Indus-
trial Science and Technology, Tokyo 100-8921, Japan (e-mail: nguyen.truong
@aist.go.jp).

Jintao Meng is with the Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 100045, China (e-mail: jt.meng@siat.ac.cn).

Link to access the simulator: https://github.com/huaipeng/ncc.simulator.exe
Digital Object Identifier 10.1109/TPDS.2023.3291795

I. INTRODUCTION

R ECENT trends in machine learning and artificial intel-
ligence have sparked a general interest in the design of

specialized hardware for deep neural networks. Deep neural
networks (DNNs) are widely used in many application domains
including image classification [1], language translation [2], and
multimedia-related tasks [3]. Although DNNs are very effective
at complex inference tasks, for fast execution they typically
run on hardware that relatively consumes too much energy,
such as GPUs, TPUs, and digital ASICs. DNNs are, in fact,
mathematical models that take inspiration from neuro-biological
systems, such as the brains of mammals. However, DNNs
contrast with natural neural networks in the way the data is
processed. DNNs work with real-valued input and process it
through non-linear activation functions. This is indeed a gross
oversimplification of natural neural networks where inputs are
sequences of electrical spikes and activation occurs when certain
thresholds in electrical potential on membranes are reached.
Neural network models that try to model this exact behavior
also exist in the field of neuromorphic engineering. Such neural
networks are called Spiking Neural Networks (SNNs) and have
been proven to be as equally capable in inference as conventional
DNNs [4]. However, our current computer systems are not
suitable for efficient execution of such models. The need for
better computational architectures for SNN inference motivated
the research and development of specialized analog neuromor-
phic hardware that allows fast and power-efficient evaluation
of SNNs [5], [6]. Research and development of neuromorphic
hardware is a relatively new direction, and there is extensive
ongoing work for enhancing currently available systems. Since
hardware production is a costly and time-consuming process,
simulators are crucial in the evaluation of newly developed
methods to explore different configurations of neural models,
architectures, hardware configurations, and materials. Detailed
simulators prevent hardware production overhead from affecting
the research and development process.

Previous work on neuromorphic chip simulators either does
not provide low-level hardware configurations (crossbar type,
material, and the associated noise model) or has insufficient
scalability. In addition to system-level simulation, other sim-
ulators emulate only the neuromorphic core [7], [8] or spiking
neuron behavior [9], [10], [11], [12]. This is not sufficient for
a full representation of the neuromorphic chip. This motivates
our work; we strive to achieve both high-detail simulation results

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6551-3067
https://orcid.org/0000-0002-3864-8027
https://orcid.org/0009-0007-7699-3319
https://orcid.org/0000-0003-1244-3151
https://orcid.org/0000-0002-7165-2095
https://orcid.org/0000-0003-3641-374X
https://orcid.org/0000-0002-6208-4102
https://orcid.org/0000-0001-9116-1595
https://orcid.org/0000-0003-1910-8532
https://orcid.org/0000-0002-3415-3676
https://orcid.org/0000-0002-4281-2053
mailto:zhang_huaipeng@ihpc.a-star.edu.sg
mailto:zhang_huaipeng@ihpc.a-star.edu.sg
mailto:gohsm@ihpc.a-star.edu.sg
mailto:tluo001@e.ntu.edu.sg
mailto:minhhn@comp.nus.edu.sg
mailto:yigit@u.nus.edu
mailto:wongwf@nus.edu.sg
mailto:mohamed.attia@riken.jp
mailto:matsu@acm.org
mailto:chin.hou@aist.go.jp
mailto:nguyen.truong@aist.go.jp
mailto:nguyen.truong@aist.go.jp
mailto:jt.meng@siat.ac.cn
https://github.com/huaipeng/ncc.simulator.exe

2768 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

Fig. 1. Configurable parameters in Simeuro to simulate a neuromorphic chip
with realistic hardware defects, neuron model, and different network topology.

and high scalability. We achieved this by using GPU-accelerated
supercomputers and clusters to scale and accelerate certain
parts of the simulation. We also use the otherwise idle CPUs
by dynamically allocating tasks in the simulation either to the
CPU or GPU, based on whether a specific task favors CPUs
(i.e., latency-sensitive parts of the simulation) or GPUs (i.e.,
throughput-sensitive parts of the simulation).

In this paper, we present Simeuro, a system-level simulator
capable of large-scale and fine-grained simulation of various
neuromorphic chips running real workloads. The simulator is
a necessary middleware for evaluating the performance of the
neuromorphic chip and helping engineers debug the complex
issues involved in mapping spiking neural networks onto chips.
Simeuro is inspired by a multi-threaded single-CPU simulator
by Lee et al. [13] w.r.t. to the features it can simulate. In
contrast to the simulator proposed by Lee et al. Simeuro in-
troduces qualitative, quantitative, and practicality aspects that
could transform the landscape of neuromorphic simulations
from small and simple proof-of-concept chips to be able to
simulate current and next-generation neuromorphic chips at a
very fine grain. Designing and implementing a simulator that
scales to 1,000 s of GPUs or CPUs involves several challenges.
First, it is imperative to orchestrate the distributed and hybrid
simulation environment where different components of the sim-
ulation can scale (i.e., asynchronous stall-free pipeline). Second,
the core simulation on the GPUs requires many optimizations
to achieve high performance (e.g., shared memory blocking,
altering the data access pattern and memory layout, etc.), Third,
efficient parallelization of the routing component on the CPU
requires a lock-free algorithm to simulate the fine-grained details
of routing. Finally, an end-to-end approach is required to do
a system-scale simulation starting from splitting the work and
loading it, and up until the results are generated.

Simeuro can simulate a chip with a configurable NoC and
support both the digital crossbar and the RRAM crossbar routing
using fine-grained configurable parameters to describe each
component of the chip in detail. Fig. 1 describes how we can
configure the chip to simulate according to the defect models

and the chip described in Section II-A. Besides the hardware
model to simulate, the user can also selectively use GPUs
and/or CPUs to speed up the simulation using our multi-GPU
multi-node design described in Section IV. Simeuro can output
cycle-accurate data on how the spikes are processed inside the
chip and the power consumption of the chip. Thus, it can:
� measure the impact on accuracy when:

- using a different material (e.g., Cu, HfO2, NiO) for
RRAM crossbar with a variety of noise and defect
models;

- using different number of bits for the digital crossbar to
store quantized weights;

- using different neuron models;
� analyze the network traffic of different 2D-mesh network

topology, chip configuration, and workload;
� analyze the power consumption of the chip with a specific

configuration and workload;
� simulate a physical chip with the configurations shown in

Fig. 1.
Although Simeuro can simulate arbitrary chips given a config-

uration file and spike sources, it cannot simulate an SNN model
directly because the neural network layers can have arbitrary
dimensions and connections while the core has limited dimen-
sions and connections due to the crossbar design (e.g., 256x256)
and NoC topology. To simulate an SNN model from a software
framework, the user has to map the network architecture to the
real cores with limited dimensions and give the final result as
input to Simeuro. The task is done using a separate tool [14].
This distinguishes it from other functional simulators that work
on abstract SNN models that do not consider physical constraints
arising from hardware implementation. Also, Simeuro being a
functional simulator distinguishes it from low-level hardware
description language (HDL) simulators that would be more ac-
curate in simulating actual hardware but would take so long that
simulating a realistic SNN model would simply be infeasible.

In summary, Simeuro advances the state-of-art in system-level
neuromorphic simulations as follows:
� Qualitatively: It supports highly configurable simulation

of digital chips that may use novel resistive random access
memory (RRAM) technology,

� Quantitatively: The simulator is highly scalable. We have
scaled simulations using up to 512 GPUs to simulate neu-
romorphic chips with up to 20,000 of neurosynaptic cores.
The simulator can run in a hybrid fashion on both GPUs
using CUDA and multi-threaded CPUs using OpenMP.
Simeuro can maximize performance by allocating suitable
tasks for GPUs and/or CPUs depending on a user-specified
configuration as well as the underlying hardware. To speed
up the simulation of the network-on-chip (NoC), we intro-
duce lock-free parallelization that avoids race conditions
during inter-router communication,

� Practicality: The simulator can run on Linux, Windows,
and Mac OS. Simulations can be scaled to multi-nodes
with multi-GPUs in a transparent way, and the modular
design of the simulator components allows for extending
the simulator with new features.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SIMEURO: A HYBRID CPU-GPU PARALLEL SIMULATOR FOR NEUROMORPHIC COMPUTING CHIPS 2769

Fig. 2. Example of a SNN and its neuron model.

II. BACKGROUND AND MOTIVATION

A. Neuromorphic Computing

In this section, we will introduce neuromorphic computing
and some related concepts.

1) Spiking Neural Networks: A Spiking Neural Network
(SNN) is a class of artificial neural networks that mimic the
actual biological behavior of the neuron. The model involves
a network of connected neurons. Unlike conventional artificial
neural networks where each neuron transmits information as
real values at each time step, neurons in SNNs only fire when
the accumulated effect to itself reaches a certain firing threshold.
This is usually modeled as the accumulated membrane voltage
of each neuron as shown in Fig. 2(a). One of the most popular
neuron models is the leaky-integrate-and-fire (LIF) model. At
each time step, the membrane voltage in the neuron will be
updated after integrating the synaptic inputs (X) from all the
axons and subtracting a pre-configured leak amount. When the
membrane voltage in the neuron exceeds a pre-defined threshold
(Vth), the neuron will fire a spike (S) and the voltage will be reset
to the initial level. Fig. 2(b) demonstrates the integrate-and-fire
process of the neuron i.

Each input’s contribution towards the final firing of the target
neuron is determined by its weight (W). The fired signal (S)
will travel to its connected neuron and increase the chance
for the target neuron to fire the subsequent signal to other
neurons. This behavior is similar to the neuron firing model in the
brain. Although we can simulate such behavior using software
simulation, running SNN efficiently requires special hardware,
which belongs to a new class of computers specifically designed
for such tasks.

B. Hardware Model and Simulation

Neuromorphic chips are developed as AI hardware special-
ized in running SNNs. Real physical neuromorphic chips are
becoming increasingly produced in both academic labs and
industry, most notably IBM’s TrueNorth [6] and Intel’s Loihi [5].
Neuromorphic chips are typically designed to follow the struc-
ture of artificial neural networks: a large number of small
computing cores correspond to a small batch of neurons whilst
configuring connections to subsequent neurons. Neuromorphic
chips with several thousands of cores can execute deep SNNs
more efficiently than CPUs and GPUs, in terms of both compute
time and energy.

C. Core Design: Crossbar

The basic computation of each layer in Fig. 2 can be mapped
to crossbars [15] in neurosynaptic cores1 which can connect the
input to the actual output of each layer. In the crossbar, the hor-
izontal lines (word lines) are connected to the input and receive
input spikes. The vertical lines (bit lines) are connected to the
output neurons. The crossing point between the two lines stores
the synaptic weight information of each connection. We use two
different types of crossbars, namely a digital and a RRAM based
crossbar, to store weights and perform the multiply-accumulate
operation on each vertical line. In the next two sections we
elaborate on the merits and demerits of digital and RRAM
crossbars.

1) Digital Crossbar: This type of crossbar is used to store
synaptic weights in digital form. The weights would then be read
and used in the dot product with input values to compute the final
output. The computation module is implemented using conven-
tional digital circuitry to realize the multiply-and-accumulate
operation. The data is typically quantized to reduce the bitwidth
which in turn would lead to a reduction in memory and energy
consumption [16].

2) RRAM Crossbar: To reduce energy usage, researchers
have been utilizing analog systems to perform matrix-vector
multiplication. The most common design is to use the conduc-
tance (G) of resistive random access memory (RRAM) cells to
represent weights [17], [18], [19], [20]. RRAM is a novel form
of non-volatile memory technology that varies the resistance of
a special solid dielectric material to store data. The input value
is represented as Voltage (V) value by using a digital-to-analog
converter (DAC) as in Fig. 3(a). The electric current (I) after
each cross point is the multiplied value of weight and input
in analog domain in accordance to Ohm’s Law. In the vertical
line in Fig. 3(b), the current of each input is added together
according to Kirchoff’s Current Law. This is called a current
sum. In effect, the entire vertical line performs a dot product
between the inputs V and weights W to produce the output
of each neuron. Assuming that we have inputs X1, X2 being
converted to V1, V2, the 2 weights W1,W2 are represented by
the conductance G1, G2, Fig. 3(b) shows how the dot product
result can be represented by the current I at the end of each
vertical line.

For each RRAM cell, the material used to design them and the
operating environment affect the accuracy of the output values.
RRAM switches by the formation and destruction of nanoscale
conductive filaments in the dielectric material. This physical
phenomenon is subject to noise. In addition, the movement of
charge carriers inside the filament gives rise to random telegraph
noise (RTN). We used the same RRAM model as Lee et al. [13]
that also incorporated a noise model. The noise model is also
described in [21]. Lee et al. implemented the method using a
uniform random number generator on CPU. We used CURAND
on the GPU to achieve a similar result.

1For the remainder of this paper we use ”core” to mean neurosynaptic core
unless otherwise stated.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

2770 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

Fig. 3. Analog crossbar and Multi-core designed simulation. (a) Analog crossbar used to compute the multiplication of weights matrix (Wx,y) and axon inputs
vector (Xi). (b) Dot product of Voltage (Vi) and Conductance (Gi) results in the value of current I at the end of each vertical line. (c) Multi-core design with the
building block of each core as crossbar connects to the NOC. The routers choose the bus paths to send spikes to transfer them to their destination cores.

Since conductance is an unsigned value while weights are
signed values, two vertical lines, one for the positive and an-
other for the negative value, is needed for each neuron. This
is called a differential pair [22]. The differential pair for Wi,j

is marked as W+
i,j and W−

i,j in Fig. 3 for the positive and the
negative value, respectively. At each neuron, we combine the
accumulated value of the differential pair together to obtain the
final output.

D. Multi-Core Design and Communication Network

The crossbar in Fig. 3(a) and (b) can be used to process
the dot product of an SNN layer or part of a layer. However,
when designing a chip for handling larger neural networks of
different architectures, it is not efficient to use a large crossbar in
a single neurosynaptic core to process. The most popular method
is to organize these computational crossbars into multiple neural
cores. Depending on the workload, a number of cores will be
allocated and used. Fig. 3(c) shows how to organize the crossbar
in Fig. 3(a) to form a larger system that can have thousands
of cores and process a very deep network having millions of
neurons. Each core in Fig. 3(c) consists of a crossbar, an input
module to decode and receive the spike, and an output module
that executes the neuron’s activation model to fire spikes. The
neurosynaptic cores will connect to each other via an intercon-
necting network with a routing mechanism that routes spikes
among neurosynaptic cores.

Because routing information and the spike outputs are dy-
namic and affect the total energy usage, the communication
network is a vital part of the real chip and in our simulation. There
are two main communication models supported by our simulator.

1) Ideal Network: The assumption of an ideal network means
there would be no delay in transferring spikes between cores. An
ideal network also assumes that each core is fully connected to
all other cores. In practice, this network is not realistic, yet can
be helpful in research and development when users focus only
on the processing capability of cores and prefer to ignore the
communication cost.

2) Topology-Based Network: There are several topologies
that can be used to realize the communication network [23],
[24], [25]. In our simulator, we support the mesh topology, as
it is one of the most popular topologies used at the chip level.
In a 2D mesh network (Fig. 3(c)), there is a router connected to
each core that sends and retrieves spikes on the interconnecting
bus. The router at each interconnect also has the responsibility
to determine which direction to send each spike into, according
to the destination core. The routing mechanism needs to be fully
simulated for the development of a real large-scale chip.

E. Motivation for a Large Scale System-Level Simulator

Designing real neuromorphic chips is expensive. With various
network architectures and sizes, the decision to choose the core
size, the number of cores, and how they are connected affect
the overall performance and energy consumption of the whole
system. At the lower level, the neuron model and the crossbar
type in each core greatly affect the accuracy of the SNN. These
factors must be considered in the early stages of development.
Simulating hardware and software mapping helps to forecast
the effects of such factors during the development and the
actual production of neuromorphic chips. Thus, a simulator is an
important tool for the design space exploration of these factors.

When designing a simulator, we need to consider the current
trend in increasing the computational power of neuromorphic
chips. More chips and systems are being developed with more
cores connected. The number of cores has grown from the
range of 256-4096 earlier Kapoho Bay, Nahuku systems and
IBM TrueNorth chip to 98,304 cores in the current generation
of Intel Pohoiki Springs [26]. The size of each core can also
increase, depending on the use case. Hence it is imperative
that the community can scale the simulation environment to
enable simulations or large chips at a reasonable simulation
time. Additionally, when considering the space of possible
configurations that may need to be tested on many different
network architectures, the performance of the simulator can
quickly degrade and hinder the design and development process
of real neuromorphic chips.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SIMEURO: A HYBRID CPU-GPU PARALLEL SIMULATOR FOR NEUROMORPHIC COMPUTING CHIPS 2771

One particularly important, and costly, task in simulating
designs for production chips is trying different RRAM noise
models and resistance ranges. These factors affect the accuracy
of the SNN models and the cost and energy consumption of
the actual chip. It is crucial to efficiently simulate potential
configurations to make decisions on which material and design
are suitable for the real chip. With the current multi-threaded
simulation in [13], each simulation workload requires hours of
computation. A typical chip production workflow requires trying
thousands of configurations to determine the right design. These
configurations include crossbar dimension, non-ideal effects of
each potential RRAM material, chip dimension, traffic rout-
ing algorithm, NoC model on different SNN models, and test
datasets. Speeding up a full system simulator at this stage will
expedite the whole process significantly.

III. RELATED WORK

There are many proposals to simulate and implement spiking
neural networks, as well as neuromorphic computing systems
in general [8], [9], [10], [11], [27], [28], [29], [30]. These range
from software functional models that only evaluate the accuracy
of the model to detailed hardware and system levels.

For software simulation of SNN, previous studies developed
support for describing and running SNN models on popular deep
learning frameworks [9], [10], [11], [27]. These studies leverage
the convenience and popularity of deep learning frameworks and
developed their own solutions as extensions to such frameworks.
Nemo [12] used discrete event simulation to scale up in large
systems and to simulate very large SNN models. However,
no consideration was given to the physical implementation
(e.g., different type of neurons, RRAM crossbar noise models).
Furthermore, there are no performance results from real-life
applications with realistic chip designs other than those of their
abstract model being simulated as a proof-of-concept. Kolasa et
al. [31] also proposed a framework that targets self-organizing
neural networks, a completely different model from SNN. We
were unable to compare with this tool because it is a functional
exploration tool that gives no performance numbers.

For hardware simulations, there are several works mostly fo-
cused on the single core or single crossbar simulation [7]. Some
other simulators focus only on the design of digital crossbars
and do not provide a detailed simulation of the analog RRAM
crossbar [28], [29]. MNSIM [8] is a single-threaded simulator
that reports detailed hardware simulation that surpassed SPICE
simulation. The main simulated component is a computing core
with a crossbar configuration, NoC models like the ideal net-
work and mesh network in Simeuro are not supported. Simeuro
differs from this category as we provide both hardware-level
data as well as higher level data such as NoC statistics, chip
configurations and core allocation information based on realistic
workloads.

In system-level simulations, existing works can simulate the
hardware extensively to provide performance insights and de-
termine the bottleneck factors of each hardware model. From
the simulation results, newer and better hardware models can
be proposed. Khalil et al. [32] proposed a simulator targeting

a novel “block-based neural network” model. However, it was
tested only on very small network models, with no evidence of
further scalability. The main goal of their simulator is to improve
the implementation flow for FPGAs. Lee et al. [13] developed an
extensive simulator at the system level. Their simulator can run
multi-threaded using OpenMP on multiple CPU cores. However,
when simulating larger models and hardware, the CPU-only
OpenMP implementation has scalability limitations.

System-level simulations are important tools in SNN chip
design. Scaling has been a serious challenge for existing simu-
lators because fine-grained cross-bar designs and system-level
traffic simulations are computationally very demanding. In this
paper, we propose Simeuro, a system-level simulator for neuro-
morphic chips that addresses the scalability issue. Simeuro can
run fine-grained low-level simulations of neuromorphic chips
with up to 20,000 neurosynaptic cores by using multiple GPUs
to accelerate the simulations of DNN inferencing on very large
datasets.

IV. A HYBRID CPU-GPU SIMULATOR

A. Overview

Simeuro consists of two main parts: the neurosynaptic core
simulator and the network on a chip (NoC) simulator.

The neurosynaptic core simulator views the neuromorphic
chip as comprising of a series of neurosynaptic cores with N
axons as inputs, M digital leaky integrate-and-fire neurons,
and a digital or RRAM crossbar with a size of N ×M . A
digital crossbar stores the learned weights on its array as signed
integers with configurable bit widths for computation, while a
RRAM crossbar stores them as pairs of low- and high-resistance
states.

The neurosynaptic core simulation is executed on GPUs since
it is more suitable for an embarrassingly parallel architecture
with a large number of lightweight cores performing the large
volumes of calculations needed.

The neurosynaptic cores are connected on a NoC. The NoC
simulator uses a 2D-Mesh topology, a popular choice for NoCs,
for the communication network that enables spike transmission
between routers. In our use case, the NoC transmits spikes
through routers. Such an operation is memory intensive and
can lead to severe thread divergence when executed on the
Single Instruction Multiple Threads (SIMT) execution model of
modern GPUs. With this performance consideration in mind,
we have opted for a hybrid approach in Simeuro where the
neurosynaptic core simulator runs on GPUs while the NoC
simulator runs on CPU. The main challenge in the design of
Simeuro is to manage the overhead involved in communicating
and synchronizing these two simulators.

Fig. 4 shows a high-level overview of Simeuro. The neurosy-
naptic core simulation takes spike sources as inputs to cores in
the input layer and sinks spikes from cores in the last layer for
further classification. The simulator can also calculate the energy
consumption in the neurosynaptic cores. It is also responsible
for simulating different crossbar types, neuron types, and the
noise model of real devices.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

2772 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

Fig. 4. Overview of Simeuro, a hybrid CPU-GPU parallel simulation platform.

Fig. 5. Distributed computing in the neuromorphic-chip simulation with four
instances on two computing nodes.

For the communication network, the NoC simulation pro-
duces two metrics to estimate traffic performance in 2D mesh-
based network: average routing cycles during which spikes are
forwarded from source cores to destination cores, and energy
estimation in the NoC. At each simulation cycle, the spikes will
be sampled to be passed to the NoC simulation. More detailed
information on the sampling technique in the simulator will be
introduced in a later section.

Since our goal is to achieve high-detail simulation results with
many configurable parameters for research and development, we
adopted the configuration model and input/output format from
Lee et al. [13]. Our simulator supports the same configura-
tions, basic functionalities, and RRAM noise models as in the
aforementioned framework. With all configurable parameters
and outputs remaining the same, we only focus on describing
the internal design and implementation of our framework in this
paper.

Simeuro can take advantage of multi-GPU systems to acceler-
ate core simulations by splitting the input work load into multiple
‘chunks’. For example, to collect simulation statistics of a dataset
consistingN images, we can useM GPUs to processN images.
In an ideal case, this speedup the simulation time by a factor
of M .

In Simeuro we create multiple program instances through the
MPI library [33] to perform the simulation tasks simultaneously,
where each instance takes a chunk of the dataset and executes the
simulation on the GPUs available in the compute node. Fig. 5
shows an example of using two compute nodes, where each
compute node hosts two MPI, ranks to execute the simulation.
Rank 0 orchestrates the execution by splitting the dataset equally
into four subsets and distributing the subsets among other ranks
that will perform the simulation simultaneously.

Fig. 6. Workflow of the core simulation in the running state where different
steps are executed by different GPU kernels (functions).

V. NEUROSYNAPTIC CORE SIMULATION

A. Overview

The neurosynaptic core comprises of a small batch of input
axons, corresponding output neurons, and a crossbar. Depending
on the type of crossbar and neuron, the accuracy of a SNN and
the energy consumption in neurosynaptic cores need to be fully
simulated in the core simulation. The heart of a neurosynaptic
core is the crossbar that establishes junctions between neurons
and axons. The crossbar memory can be configured to set
different trained SNN models on the chip. Each component can
be described as follows:
� Axons correspond to the rows in the crossbar. They use

spikes as inputs to connect neurons through synapses in
the crossbar.

� Crossbars memorize the trained weights at the intersection
of columns and rows for synapses. The simulator supports
two types of crossbars: digital crossbar and RRAM cross-
bar.

� Neurons fire spikes based on the leaky integrate-and-fire
(LIF) model and have configured connections to subse-
quent axons in other cores.

B. Simulation Workflow

The core simulation has three states during execution: ini-
tializing, running, and terminating. In the initializing state, the
simulator will create a set of cores. It then loads the synapses
and neuron settings for each core from the configuration files.
After initialization, the neurosynaptic core simulation enters the
running state, and in this state, the simulator will perform the
neural computation on the chip. Finally, in the terminating state,
the simulator calculates the average energy consumption of the
inference per image in the neurosynaptic core simulation. Fig. 6
illustrates the workflow of the neurosynaptic core simulation in
the running state on the GPU. The core simulation is a doubly
nested loop. The inner loop will take a spike source as input
and advance the simulation state using CUDA kernels at every
time step, while the outer loop will save output spikes from the
simulator to files and load the next spike source from a file as

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SIMEURO: A HYBRID CPU-GPU PARALLEL SIMULATOR FOR NEUROMORPHIC COMPUTING CHIPS 2773

input to the inner loop. In each iteration of the outer loop, the
simulation state inside the inner loop will be reset. The core
simulation workflow can be summarized in the following steps:

1) Load the next spike source. In this step, the simulator reads
a spike source from a local file, which includes a sequence
of input spikes for each time step. The inner loop will feed
input spikes to axons at each time step iteratively.

2) The input spikes for the current time step are copied from
host (CPU) memory to device (GPU) memory.

3) Feeding kernel: input spikes are fed to specific axons
located at the cores of the input layer.

4) Core process kernel: the core process integrates synaptic
inputs from all axons and updates the membrane voltages
in neurons. A CUDA thread updates the state of a neuron
and a large number of threads update all the neurons in
parallel.

5) Neuron process kernel: the neuron process fires spikes.
Neurons will be activated to fire a spike when the mem-
brane voltage subtracting leaky value exceeds the config-
ured threshold.

6) Sinking spikes from neurosynaptic cores in the final layer
are copied from GPU to CPU and are temporarily buffered
in the host memory.

7) Routing kernel: incoming spikes are forwarded to des-
tination cores using the ideal network model. Note that
the ideal network model is always included in the GPU
Core simulation. The more complex and realistic NoC
model will be simulated separately on the CPU side when
requested (description in Section VI). A large number of
threads are launched to simultaneously forward incoming
spikes from source neurons to destination axons. If the
configured maximum number of iterations is reached, the
simulator will go to the next step. Otherwise, it increments
time steps and continues to step 2.

8) Save output spikes from all iterations to a file to calculate
the classification accuracy of SNNs.

9) Reset kernel: reset the simulator states (membrane volt-
ages in neurons, presynaptic spikes in axons, postsynaptic
spikes in neurons, etc.) before processing the next spike
source. If there are remaining spike sources, the simulator
will continue to step 1. Otherwise, the simulator will
terminate.

C. Mapping the Core Simulation to GPU’s Hierarchy

The core simulation, in either the digital crossbar or the
RRAM crossbar, will run on GPUs in a similar fashion. The
ideal network model will also run on GPUs to reduce the memory
transfer needed between the host and the device. The allocation
of which workload to run on the GPUs depends on the user’s
choice in the configuration file. The core simulation consists of
accumulating the synapse value and checking the condition of
whether a spike is fired. After the core simulation, the sampled
spikes will be fed to the NoC simulator.

Consider the neuromorphic chips to be simulated having C
cores, each core has N neurons, A axons, and S = A×N

synapses. We can map each core to CUDA blocks.2 Because each
core typically has its own input, the inputs can be loaded into the
shared memory of each block to reduce latency. For example,
if a neurosynaptic core has 256 neurons and 256 axons and a
neuromorphic chip includes 1,000 cores, the core simulator will
launch 1,000 blocks with 256 threads on the GPUs. If a warp
contains 32 threads in GPUs, 1,000 blocks with 256 threads will
be divided into 8,000 warps. Inside each block, we use each
thread to compute a neuron output. The task of each thread is
to loop over all axons and accumulate the product of the axons
and synaptic weight to a single value. Here, depending on the
crossbar model, there might be additional computations (e.g.,
the RRAM crossbar will have a certain noise model to affect the
accumulating value).

After the loop, the accumulated value will be checked against
a firing model to produce spike output if the threshold is reached.

With this mapping, the shared memory is used whenever
each thread has enough workload to perform. Our mapping
will launch C blocks with N threads each. The shared memory
overhead is A elements of floating point type. However, the
drawback of this mapping is that the number of simulated cores
is small. In that case, the number of blocks launched cannot fully
utilize the GPU.

D. Memory Mapping and CUDA Optimizations

To optimize the performance of the simulator, we need to
consider the access pattern and the usage of memory for the
simulation data.

For synaptic values of an entire chip, normally the size of them
is very large: we store a 2D array of synapses in the crossbar to
a 1D array row-wise in global memory. A neuron in a CUDA
thread accesses synapses from global memory and integrates the
input spikes multiplied by the synaptic values in the crossbar.
Digital crossbars use a single weight to implement one synapse,
while RRAM crossbars use a pair of resistances. Also, the
RRAM model needs more memory to simulate non-ideal effects.
Thus, the memory usage of RRAM is much higher than that of
a digital crossbar. This will be discussed in Section VII-C2.

The core simulator also needs to allocate regions in the global
memory to store input spikes to axons and output spikes from
neurons; usually, their sizes are small because the size of input
spikes depends on the length dimension of the axons, while
the size of output spikes depends on the length dimension of
the neurons in the entire chip. For input spikes, we can take
advantage of shared memory to improve computational perfor-
mance. Each active CUDA block loads the required input spikes
from global memory to shared memory before executing the
core processing code. The shared memory is accessible by the
threads in the same thread block, hence the same simulated core.
As discussed above, the shared memory required is a function of
the number of input spikes. Due to the limited shared memory
for each CUDA block, we only use it to buffer input spikes.

2For a general overview on CUDA, we refer readers to the CUDA Program-
ming Guide [34].

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

2774 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

The core simulator also needs to allocate an area in the
global memory to store the settings for each neuron, including a
threshold, a membrane voltage, a reset value, connection to the
next axons, etc.; its size depends on the number of neurons in
the entire chip.

We applied several optimizations to the simulator including
the use of shared memory and row-wise coalesced global mem-
ory accesses. Our experiments show that using shared memory
can improve the core simulation by up to 23%, depending on
workload. Likewise, we conducted an experiment to measure
the different speeds between access patterns. A naive imple-
mentation would use column-wise order to flatten the synapse
memory. Compared to column-wise accesses, row-wise accesses
can increase the overall simulation speed by up to 7.2×.

VI. NETWORK-ON-CHIP SIMULATION

A. Overview of Network-on-Chip Simulation

The network-on-the-chip (NoC) provides on-chip communi-
cation for neuromorphic chips. The simulator estimates traffic
flow and energy consumption during communication using a
popular NoC model (introduced by [35]) for 2D mesh-based
NoCs. The NoC comprises routers, network interfaces, links,
network topology, and flits:
� Links are physical wires to connect adjacent routers and

transfer flits between them.
� Flits are atomic units exchanged in the communication

network within one routing cycle. Usually, a packet is
split into a variable number of flits, including a header
flit and multiple body flits [36]. In this paper, the simulator
simulates a neuromorphic chip that is specific for spiking
neural networks where the spiking value is always one, so
the payload data in the body flits can be ignored, and a
packet is converted into a header flit with a target address.

� The network interface is a connection interface between the
neurosynaptic core and the router. The network interface
provides two-way communication to receive or send data
and is responsible for buffering spikes and assembling them
into packets. Initially, the network interface collects spikes
injected from neurons and encodes the spikes into packets
with destination addresses, and then forwards them to the
associated router. Then, it receives the packets from the
associated router and decodes the packets as input spikes
to axons for core processing in the next cycle.

� The network topology determines how routers, cores, and
links are connected. The simulator implements the 2D-
Mesh topology for the communication network, which is
a common and simple network topology. This network
includes X rows and Y columns. The routers are deployed
at each junction point and connected to adjacent routers
through links.

� Routers are the most important elements in the commu-
nication network and are connected by links and forward
incoming flits along routing paths to either the next routers
or destination cores. A router consists of five input ports, a
crossbar switch, an arbiter, and five output links. The input
port has to route logic to determine the next node of a flit.

Fig. 7. A generic router architecture used in NoC simulation.

Fig. 8. Flowchart of NoC Simulation in the running state using a multi-core
CPU.

The routing logic implements an XY routing algorithm,
which moves a flit in the X direction and then moves it
in the Y direction. An input port also has a FIFO buffer,
which can hold a list of flits. The size of the FIFO buffer
can be configured in the simulator. The arbiter is a logical
element that controls the order of access to the shared links,
the scheduling scheme in the arbiter uses fixed priority
arbitration [37]. Fig. 7 illustrates a typical router model.

B. NoC Simulation Workflow

The NoC simulation comprises the same three states as the
neurosynaptic core simulation: initialization, running, and ter-
mination. In the initialization state, the simulator creates a set of
routers in the 2D-Mesh topology, where each router is connected
to four adjacent routers through links except for edge routers. A
router is associated with a neurosynaptic core. The dimensions
(X and Y) of the 2D-Mesh network are specified in the con-
figuration file. After initialization, the NoC simulation enters
the running state, in which the simulator transmits incoming
packets to the target cores through routers. In the final state,
the simulator calculates two metrics: average routing cycles and
average energy consumption for spikes’ transmission in the NoC
simulation. It measures the traffic performance for a specific
SNN model in a neuromorphic-computing chip.

Fig. 8 illustrates the NoC simulation workflow in the running
state. In this state, the simulator transmits packets until all buffers
in the routers are empty. Six steps are repeated in this state.
The processing of Step 1 and Step 6 occurs between a network
interface and a router. The processing of Steps 2 to 4 occurs

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SIMEURO: A HYBRID CPU-GPU PARALLEL SIMULATOR FOR NEUROMORPHIC COMPUTING CHIPS 2775

within routers, and the processing of Step 5 occurs between
routers. The NoC simulation workflow in the running state can
be summarized into the following steps:

1) Inject packets: the network interface packetizes the spikes
fired from the neurons with destination addresses and
injects the packets to the associated router.

2) Receive flits: routers receive flits from network interfaces.
Flits are stored in the input ports of a router before being
forwarded to the next routers.

3) Route flits: the XY routing algorithm determines the routes
for the top flits in the input buffers. Then, flits will request
a specific outgoing link after routing.

4) Arbitrate and switch: fixed priority arbitration is used in
arbitration. According to routing requests from all input
ports, the accesses of shared links are allocated in order of
Fixed priority. After arbitration, a crossbar switch is used
to establish connections between the input ports and the
outgoing links.

5) Send flits: flits on the head of input ports are sent to the next
nodes through links after the input ports are successfully
guaranteed to access them. If all buffers are empty, then the
simulator goes to the next step. Otherwise, it increments
routing cycles and goes back to step 2.

6) Eject packets: flits are converted to packets when they
arrive at the destination cores and are then ejected from
the router to the network interface.

All routers perform the same operations from Step 2 to Step
5 until all input ports are empty.

C. Parallel NoC Simulation on Multicore CPUs

In Simeuro the NoC simulation uses multi-threaded program-
ming on a multi-core processor to speed up calculations. Pro-
cessing of all routers is executed in parallel. We use OpenMP to
construct parallel regions to parallelize the processing of routers
on a multi-core processor. The router consists of the 4-step
process described above. Steps 2 to 4 are internal operations
and are independent among routers, but step 5 is an inter-router
operation in which flits cross two routers through the links. If
only one parallel region is constructed by OpenMP to parallelize
the processing of routers, as shown in Algorithm 1, a race condi-
tion can occur since the routers’ processing involves modifying
their input buffers from two different threads. A critical section
(lock) is a common technique to prevent race conditions from
occurring. With the critical section, only one thread can perform
the modification of the input buffer in the router at a time. But
the disadvantages of critical section lock are obvious: (1) add
overhead for each access of input buffers; (2) only one thread
can enter the critical section while other threads are blocked and
waiting for the resources; (3) deadlock may occur when two
routers from different threads are holding and waiting to access
the resources from each other. In our NoC simulator, to avoid the
race condition, two parallel regions are constructed by OpenMP
instead of one region as shown in Algorithm 2. An implicit
barrier is created automatically at the end of each parallel region
by OpenMP to synchronize all threads. The first parallel region
groups the processing of steps 2 to 4 occurring within routers,

Algorithm 1: Conventional Parallel Routing With OpenMP
Critical Sections.

while the second parallel region groups the processing of step 5
occurring between routers.

D. Optimizing the NoC Simulator

1) Asynchronous CPU-GPU Implementation: In simulating
a complex NoC model, the NoC simulator on the GPU consists
of repeatedly copying data to the arbitrary destination location
(each destination is dynamically determined by the routing
algorithm and runtime data) and checking many if-else
conditions in each router; there is no complex computation
involved. This makes the NoC simulator on GPU very slow
due to the random global memory access pattern and thread
divergence. It is also very difficult to take advantage of memory
coalescing when each time the data package is only a spike
to a destination. We did implement a GPU version of the NoC
simulation, but only to find that it occupies≈ 99.88% of the total
simulation time and is significantly slower than the CPU NoC
simulator. In other words, all kernels in Table I only contribute
≈ 0.12% to the total runtime if the NoC is also simulated in
the GPU. Results from the Nvidia profiler also indicated that
the NoC simulator is bounded by memory-latency with limited
optimization opportunities. In contrast, a multicore CPU with its
deeper and larger memory hierarchy is better suited for this task.

Thus, we introduce a new implementation that uses both CPUs
and GPUs for simulation. Specifically, the core simulation will
run on GPUs where it is more effective, while NoC simulation

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

2776 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

Algorithm 2: Lock-Free Parallel Routing in Simeuro.

TABLE I
BREAK DOWN OF THE EXECUTION TIME OF KERNELS AND MEMORY

TRANSFER ON THE GPU BETWEEN TWO CROSSBAR TYPES. HTOD INDICATES

HOST TO DEVICE AND DTOH STANDS FOR DEVICE TO HOST

MEMORY COPIES, RESPECTIVELY

with only data reads and writes between different routers is per-
formed on CPUs. The data required for the NoC simulator that
runs on the CPU is copied from the GPU at each simulation cycle
in an asynchronous manner. The CPUs run mesh-based NoC
simulation, and the GPUs perform the ideal network simulation
without a routing mechanism to quickly distribute the spikes and
advance to the next core simulation cycle.

2) Subsampling the Data in NoC: Because NoC simulation
is a performance bottleneck in our simulator, we apply several
optimizations to reduce NoC simulation times. There are two
different alternatives that can be applied:
� Use a theoretical queueing model to derive routing cy-

cles [38], [39]. Although this method can yield a very high
speedup, the error is considerably high in certain data and

network models. Thus, a detailed energy model becomes
difficult to achieve.

� Use subsampling to reduce NoC workload [40]. By sub-
sampling a certain amount of data (e.g., 10%), the simulator
can output the simulation result with certainty and an error
bound. This method is intuitively simple to understand and
easy to apply to system-level simulators such as ours.

Thus, we use the subsampling method in our simulator as an
option for the user to choose in the configuration file. We apply
the method in [40] with a configurable amount of subsampled
data to be in the NoC simulator. The full evaluation of this is
presented in Section VII.

VII. EVALUATION

In this section, we report the performance and accuracy of
the simulator when using different hardware configurations with
variable numbers of neurosynaptic cores.

A. Experiments Setup

We conduct experiments on GPU-accelerated ABCI super-
computer3 which contains thousands of A100 GPUs for multi-
GPU results. For single GPU results we use a workstation
powered with an Intel(R) Xeon(R) W-2295 CPU @ 3.00 GHz
containing 18 cores (36 threads) and an NVIDIA GeForce RTX
2080 Ti GPU. We use the CIFAR-10 [42] dataset in the exper-
iments. The CIFAR-10 dataset consists of 60,000 32×32 color
images in 10 classes with 50,000 training images and 10,000
test images. CIFAR-10 is widely used for benchmarking the
performance of neural networks in the field of machine learn-
ing. We use a pre-trained neural network model for CIFAR-10
image classification (described in [20]). This model is a binary
network, except for the first full-precision transduction layer,
which consumes 100 neuromorphic cores as a subnet after the
hardware mapping. The spike sources for the neuromorphic-
computing chip are generated from the first transduction layer,
which converts digital values in CIFAR-10 images to spikes
with a single time step. For scaling measurement, we scale up
our experiments by duplicating this subnet (100 cores) and spike
sources N times, then we can measure a large-chip performance
with up to 20,000 cores after 200 times duplication of the subnet
and spike sources.

B. Performance & Scalability

First we measure the runtime performance of core simulation
on a single Nvidia A100 GPU. We tested 1,000 CIFAR-10
images with different number of physical neurosynaptic cores
(from 1000 - 20,000 cores). For the core simulation benchmark,
we always use the ideal-network model for NoC. Fig. 9 shows
the run-time of our simulator when the crossbar configuration
is Digital or RRAM Crossbar. As seen in Fig. 9, the runtime of
both RRAM-crossbar and digital crossbar simulations increases
linearly as the number of neurosynaptic cores to be simulated
increases. The run-times are around 1,069 and 725 seconds

3ABCI is the world’s first large-scale Open AI Computing Infrastructure [41]
and ranks 19th in the Top500 list at June 2022.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SIMEURO: A HYBRID CPU-GPU PARALLEL SIMULATOR FOR NEUROMORPHIC COMPUTING CHIPS 2777

Fig. 9. Simulation runtime for CIFAR-10 images inference by a
neuromorphic-computing chip with variable numbers of neurosynaptic cores
using a Nvidia A100 GPU between two crossbar types.

Fig. 10. Strong scaling of the Digital-crossbar simulation for CIFAR-10
images inference while keeping the number of neurosynaptic cores constant
10,000. The performance is plotted on a base-10 logarithmic scale while the
runtime is plotted on a base-2 logarithmic scale.

respectively, when the crossbar configured as RRAM and digital
crossbar with 20,000 neurosynaptic cores. In comparison digital
Crossbar, RRAM crossbar simulation takes around 40% more
time due to more computation required to simulate the RRAM
material.

1) Multi-GPU Scaling: We report strong and weak scaling
performance on the ABCI supercomputer. This experiment will
run Digital-crossbar simulations with a variable number of
GPUs or a variable number of neurosynaptic cores. The dataset
is be divided equally among the GPUs to be simulated simulta-
neously. The results of strong scaling measurement are shown in
Fig. 10. The strong scaling is measured by running the simula-
tion of 1,000 CIFAR-10 images’ inference on a neuromorphic-
computing chip with a variable number of GPUs, while keeping
the number of neurosynaptic cores constant at 10,000. From
Fig. 10 we can see that the run-time for images’ classification in
the neuromorphic-chip simulator decreases almost linearly with
the number of GPUs. In addition, Fig. 10 also shows linear strong
scaling of the performance (in images processed in one second)
when using different numbers of GPUs. The results of the weak
scaling measurement are shown in Fig. 11. The weak scaling is
measured by running the simulation of 1,000 CIFAR-10 images’
inference on a neuromorphic-computing chip with different
numbers of GPUs and with correspondingly scaled number of
neurosynaptic cores. From Fig. 11 we can see that as the number
of GPUs increases, simulating a large chip with 20,000 cores can
achieve similar performance to a small chip with 1,000 cores.

Fig. 11. Weak scaling of the Digital-crossbar simulation for CIFAR-10 images
inference, with corresponding changes in both the number of GPUs (top number
on the x-axis) and neurosynaptic cores (bottom number of the x-axis).

Fig. 12. Memory usage in GPU global memory when different numbers of
neurosynaptic cores are simulated.

C. Single-GPU Performance

1) Profiling GPU Activities: In order to understand the per-
formance of core simulation on GPUs, we ran the core simulator
on the same SNN application on CIFAR-10 images (described
in the paper [13]) using 3,680 cores with each crossbar type. We
used the nvprof profiling tool to collect profiling data about
CUDA-related activities on both CPU and GPU. The profiling
results are shown in Table I. For both crossbar types, we can
see that the core simulator spends most of the time in Core
process kernel (≈ 40% in the digital crossbar and ≈ 67% in the
RRAM crossbar). Most of the kernels have similar execution
times between the two crossbar types. The exceptions are the
core simulation in Core process kernel and copying simulation
data from the host (CPU) memory to device (GPU) memory.

2) Memory Usage: Memory usage depends on the type of
crossbar being simulated. Generally, memory on the host (CPU
side) has higher capacity than that on the GPU devices. Thus, to
determine the upper limit of the size of the network model that
our simulator can support, we measured the memory usage of
different simulation configurations. Fig. 12 shows the memory
usage on GPUs in our simulation with a different number of
cores. As we can see, memory usage increases almost linearly
with the number of neurosynaptic cores to be simulated, because
each core has independent data that needs to be stored. We can
also observe that the RRAM crossbar uses significantly more
memory than the digital crossbar. The reason is that RRAM
crossbars need more data for accurate noise simulation as well
as the differential pairs of weights for each output neuron. This

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

2778 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

contributes to the difference in performance between the two
crossbar types on GPU. As shown in Table I, the GPU to CPU
memory copy overhead in the RRAM crossbar is ≈ 2.6× that
of the digital crossbar.

3) Discussion: In the digital crossbar, the weights are only
involved in simple floating point multiply and accumulate oper-
ations. For RRAM crossbar, each weight requires an additional
two CURAND calls for each weight being read (positive and
negative weights in the differential pair in Fig. 3(a)). Processing
each weight also involves reading and writing data related to
other non-ideal effects [13]. In the Monte Carlo simulation, each
thread’s workload also depends on the output of the runtime
generated random value. This thread divergence also contributes
to lower speedup. In concrete numbers, if we simulate a work-
load with M synaptic weights (typically millions to billions),
the digital crossbar only needs to read M weights from the
global memory each time step. In the same configuration, just
to simulate one of the defects, the RRAM crossbar simulator
reads 2×M weights. To accurately simulate the noise model,
there are 2×M curand_uniform calls in each time step of
the simulator. The throughput of CURAND is much less than
floating point arithmetic [43], [44]. Hence, it is clear that they
contribute significant overhead to the RRAM core simulation.
This combines with the simulations of other defects in RRAM
results in a slower execution time. As can be seen in Table I,
Core process kernel in RRAM is almost 4× slower than in the
digital crossbar.

Currently, the simulation of a neuromorphic chip relies on a
single GPU, allowing for a maximum simulation of up to 20,000
neurosynaptic cores. Fig. 12 illustrates the memory usage of
∼34 GB for 20,000 cores. However, when dealing with a larger
neuromorphic chip, the limitations of a single GPU become
apparent: a single GPU simply does not have enough memory to
perform the simulation. To scale the simulation, we will discuss
a solution to extend our simulator to simulate a large chip across
multiple GPUs in Section VIII-B.

D. NoC Simulator Speedup

In the previous section, we reported the performance of the
core simulator and used an ideal network as the NoC model.
Besides the ideal network, our simulator also supports real-world
use cases of other types of NoCs. As described in Section IV, we
use the hybrid implementation for NoC simulation, where the
core simulation on GPU is interleaved with the NoC simulation
on multi-core CPUs. However, through experiments, we found
NoC simulation will be very slow when running on the GPU. For
example, we conducted three experiments to run NoC simulation
on GPUs with different sizes of the 2D-Mesh network: 5×5,
10×10 and 64×64. When the size of the 2D-Mesh network is
5×5, the execution times of NoC simulation on CPUs and GPUs
are similar. But when the size of the 2D-Mesh network is 10×10,
the execution time of NoC simulation on GPUs is about 5 times
slower than the time on CPUs. When the size of the 2D-Mesh
network is 64×64, the execution time of NoC simulation on
GPUs is about 30 times slower than the time on CPUs. These

Fig. 13. Scaling a MeshNetwork simulation on CPU with a variable number
of threads. The baseline is the simulation time on a single thread.

Fig. 14. Energy estimation results during image inference on CIFAR-10
test set by a neuromorphic computing chip with 100 neurosynaptic cores.
(a) Synaptic weights on neurosynaptic cores. (b) Energy heatmap of neurosy-
naptic cores. (c) Energy heatmap of routers in 2D mesh-based NoC.

experiments demonstrate that the NoC simulation is not suitable
to run on GPUs.

While NoC simulation exhibits a good scaling performance
on Intel(R) Xeon(R) W-2295 CPU @ 3.00 GHz containing 18
cores (36 threads), Fig. 13 shows the actual speedup in NoC
simulation with a size of 45×45 2D-Mesh network when scaling
the number of threads. When all 18 cores in the CPU are used
up, the execution time with 36 threads can be up to 21× faster
than with a single thread.

E. Energy Estimation

A micro-level energy model is implemented in the simulator
to estimate the energy consumption on the entire neuromorphic
chip. The simulator implements all operations in the neurosy-
naptic cores and NoC, so the micro-level energy model based on
these operations is also implemented. More details on Simeuro’s
energy estimation for neuromorphic chips is available in [45].
We also extend the single node implementation described in [45]
to Simuero (i.e., adapt the energy model to multi-nodes), this
extension simply merges the results from each node and averages
them, then calculates the average energy consumption of the
chip. Fig. 14 shows an example of the energy consumption
produced by the simulator. Fig. 14. (a) shows the distribution
of synaptic weights on the neurosynaptic cores after mapping
from a trained SNN model. In this figure, a chip is configured
to include 100 neurosynaptic cores with a size of 256×256,
each core has a set of junction points, each of which has an
x-coordinate, a y-coordinate, and a weight associated with it.
The weights from a trained SNN model are quantized as 8-bit
signed integers, the quantized weights with zero values, positive
values or negative values are mapped to green color, red color

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SIMEURO: A HYBRID CPU-GPU PARALLEL SIMULATOR FOR NEUROMORPHIC COMPUTING CHIPS 2779

TABLE II
THE VARIANCE IN SIMULATION RESULTS AND THE SPEEDUP OBTAINED BY

USING SUBSAMPLING METHOD IN OUR NOC SIMULATOR. NO DIFFERENCE IN

THE ROUTING CYCLES AND ACCURACY WAS FOUND IN ALL THE TESTS

or blue color respectively. Fig. 14. (b) shows the average energy
consumption of inference per image on different neurosynaptic
cores. Fig. 14. (c) shows the average energy consumption of
inference per image on different routers in the NoC.

F. Sampling Method

We use two test sets to evaluate the proposed sampling
method. The result is shown in Table II. The number of images
in test set A is 1,000 and the number of images in test B is 5,000.
A trained SNN model is mapped onto the chip containing 100
neurosynaptic cores with a size of 256×256. The test images are
from CIFAR-10. For comparison, the baseline does not involve
any sampling and all data (100%) will be used in the NoC.
The sampling method will be tested against this baseline. As
can be seen in Table II, our sampling method performs well:
the two metrics of average routing cycles and average energy
consumption of inference per image in the NoC are identical
or similar when we randomly select a small dataset to enter the
NoC simulation according to a given percentage. The ‘speedup’
column shows how much acceleration can be achieved in the
average execution time of inference per image on the simulator.
We can see the entire simulation has been significantly improved
when a small percentage of images are selected in the NoC
simulation. Interestingly, we found that the average routing
cycles and the accuracy of the SNN model do not change when
the percentage of subsampled data is reduced. Accuracy remains
the same because the data is actually transferred using an ideal
network on GPU.

G. Simulation Verification

Simeuro was also tested for correctness and accuracy. Our
simulator is a part of a comprehensive toolchain for estimating
the accuracy of SNNs mapped onto neuromorphic hardware. In
our toolchain, a user will first convert trained artificial neural

Fig. 15. A fabricated neuromorphic chip named as Novena [52] was designed
by Singapore A*STAR’s Institute of Microelectronics in 2021. The chip was
fabricated with 40 nm technology. A Singapore dollar coin is placed beside it
for size comparison.

networks (ANNs) to SNNs [46], [47], map the models to chips
according to their hardware structure [14], [48], [49], quantize
the learned weights into n-bit integers, and program them into
the crossbars [50]. These processes are complex and repetitive.
If the mapping results of the learned models are directly applied
to chips, programming errors may occur, and it is not easy to
locate and fix them in the hardware. Simeuro allows for designs
to be iterated upon quickly before final deployment on real
hardware [51], [52]. We verified our simulator by comparing the
results between Simeuro and a real neuromorphic chip named
as Novena. As shown in Fig. 15, it is in-house designed and its
low-level circuit design is reported in [52]. In the verification of
accuracy, we used a SNN model for MNIST, which is mapped to
7 neurosynaptic cores with a size of 256×256. Axons of the chip
worked with spike trains with a time window of 25 as their input.
Spike trains were converted from 10,000 images in the MNIST
test set. The learned weights were quantized to 4-bit integers.
Simeuro reported an accuracy of 88.71%, which matched the ac-
curacy obtained on the Novena chip. In addition to accuracy, we
also verified the energy consumption estimated by our simulator
using Novena. We compared the energy consumption estimated
by our simulation with actual measurements done on the Novena
chip. This demonstrates that our simulator can accurately esti-
mate on-chip energy consumption. In particular, our simulator
estimated that the energy consumed per spike on the Novena
chip is about 1 picojoule (pJ), which is consistent with the actual
hardware measurement. More details were reported in [45].

VIII. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper, we present Simeuro, a system-level simulator
for neuromorphic chips. The simulator uses both GPUs and
CPUs to optimize for different parts of the simulation. Our
simulator supports different hardware types (digital and RRAM
crossbar) with configurable properties and 2D Mesh-based NoC
to produce fine-grained statistics on various parts of the system.
With the optimized hybrid design, we can execute the core
simulation on GPUs (CUDA) and the NoC simulation with
multi-threaded programming on CPUs. The size of the models

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

2780 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

Fig. 16. Prototype of 2-GPU simulation of N neurosynaptic cores. An equal
number (N/2) of neurosynaptic cores are allocated to each GPU. Two GPUs
need to communicate to synchronize spikes data.

that our simulator can handle is the largest reported to date for its
class. As technology scales and models grow in size, we believe
that our simulator can help design and develop brain-inspired
computing methods shortly.

B. Future Work

As future work, we plan to extend our simulator to support
large chip simulations with multiple GPUs. Currently, one MPI
rank in the simulation only works on a single GPU, limiting
a simulated chip to a maximum of 20,000 neurosynaptic cores.
However, when simulating larger neuromorphic chips with more
neurosynaptic cores the memory requirements exceed the capac-
ity of a single GPU. To address this limitation, we can extend our
simulator to support large chip simulations with multiple GPUs
by automatically allocating an equal number of neurosynaptic
cores to each GPU for simulation. For example, we can simulate
N neurosynaptic cores on K GPUs by having one MPI rank
splitting them into N/K cores for each GPU to simulate. In
Fig. 6, Core process kernel and Neuron process kernel can be ex-
ecuted independently on each GPU. In Routing kernel, because
we need to send the spikes to their destination cores, which
can be located on any GPU, device-to-device communication
is required to synchronize the spikes. Thus, for K GPUs, this
solution requires K × (K − 1) peer-to-peer memory transfers
to merge and synchronize spikes data among all GPUs before the
execution of the Routing kernel can begin. While this multi-GPU
solution may introduce memory transfer and synchronization
overhead, it will enable large chip simulations with more than
20,000+ cores. Fig. 16 provides a visualization of our initial
exploration in a 2-GPU system.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds.,
Curran Associates, Inc., 2012, pp. 1106–1114. [Online]. Available: https://
proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a-
68c45b-Paper.pdf

[2] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder–decoder approaches,” in
Proc. 8th Workshop Syntax Semantics Struct. Statist. Transl., Doha, Qatar:
Association for Computational Linguistics, 2014, pp. 103–111. [Online].
Available: https://aclanthology.org/W14--4012

[3] Y. Deldjoo, M. Elahi, P. Cremonesi, F. Garzotto, P. Piazzolla, and
M. Quadrana, “Content-based video recommendation system based on
stylistic visual features,” J. Data Semantics, vol. 5, pp. 1–15, Jun. 2016.

[4] W. Maass, “Networks of spiking neurons: The third generation of neu-
ral network models,” Neural Netw., vol. 10, no. 9, pp. 1659–1671,
1997. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0893608097000117

[5] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-chip
learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan./Feb. 2018.

[6] P. A. Merolla et al., “A million spiking-neuron integrated circuit with
a scalable communication network and interface,” Science, vol. 345,
no. 6197, pp. 668–673, 2014.

[7] T. Patrick Xiao, Christopher H. Bennett, Ben Feinberg, Matthew J.
Marinella, and Sapan Agarwal, “CrossSim: accuracy simulation of analog
in-memory computing,” 2017. [Online]. Available: https://github.com/
sandialabs/cross-sim

[8] L. Xia et al., “MNSIM: Simulation platform for memristor-based neu-
romorphic computing system,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 37, no. 5, pp. 1009–1022, May 2018.

[9] A. K. Fidjeland and M. P. Shanahan, “Accelerated simulation of spiking
neural networks using GPUs,” in Proc. Int. Joint Conf. Neural Netw., 2010,
pp. 1–8.

[10] D. Yudanov, M. Shaaban, R. Melton, and L. Reznik, “GPU-based
simulation of spiking neural networks with real-time performance
& high accuracy,” in Proc. Int. Joint Conf. Neural Netw., 2010,
pp. 1–8.

[11] M. Beyeler, K. D. Carlson, T.-S. Chou, N. Dutt, and J. L. Krichmar,
“CARLsim 3: A user-friendly and highly optimized library for the creation
of neurobiologically detailed spiking neural networks,” in Proc. Int. Joint
Conf. Neural Netw., 2015, pp. 1–8.

[12] M. Plagge, C. D. Carothers, E. Gonsiorowski, and N. Mcglohon, “NeMo:
A massively parallel discrete-event simulation model for neuromorphic
architectures,” ACM Trans. Model. Comput. Simul., vol. 28, no. 4, pp. 1–25,
2018.

[13] M. K. F. Lee et al., “A system-level simulator for RRAM-based neu-
romorphic computing chips,” ACM Trans. Archit. Code Optim., vol. 15,
no. 4, Jan. 2019, Art. no. 64. [Online]. Available: https://doi.org/10.1145/
3291054

[14] L. Yang et al., “Coreset: Hierarchical neuromorphic computing supporting
large-scale neural networks with improved resource efficiency,” Neu-
rocomputing, vol. 474, pp. 128–140, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0925231221018555

[15] M. Tarkov, “Mapping weight matrix of a neural network’s layer onto
memristor crossbar,” Opt. Memory Neural Netw., vol. 24, pp. 109–115,
Jul. 2015.

[16] T. M. Taha, R. Hasan, C. Yakopcic, and M. R. McLean, “Exploring the
design space of specialized multicore neural processors,” in Proc. Int. Joint
Conf. Neural Netw., 2013, pp. 1–8.

[17] A. Ankit, A. Sengupta, P. Panda, and K. Roy, “RESPARC: A reconfig-
urable and energy-efficient architecture with memristive crossbars for deep
spiking neural networks,” in Proc. 54th Annu. Des. Automat. Conf., 2017,
pp. 1–6.

[18] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars,” ACM SIGARCH Comput. Archit.
News, vol. 44, no. 3, pp. 14–26, 2016.

[19] M. Hu et al., “Dot-product engine for neuromorphic computing: Program-
ming 1T1M crossbar to accelerate matrix-vector multiplication,” in Proc.
53rd ACM/EDAC/IEEE Des. Automat. Conf., 2016, pp. 1–6.

[20] T. Luo et al., “NC-net: Efficient neuromorphic computing using aggregated
sub-nets on a crossbar-based architecture with non-volatile memory,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 41, no. 9,
pp. 2957–2969, Sep. 2022.

[21] S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, and
D. Ielmini, “Statistical fluctuations in HfOx resistive-switching memory:
Part II–Random telegraph noise,” IEEE Trans. Electron Devices, vol. 61,
no. 8, pp. 2920–2927, Aug. 2014.

[22] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. C. Adam, K. K. Likharev,
and D. B. Strukov, “Training and operation of an integrated neuromorphic
network based on metal-oxide memristors,” Nature, vol. 521, no. 7550,
pp. 61–64, 2015.

[23] S. Han, J. Lee, and K. Choi, “Tree-mesh heterogeneous topology for low-
latency NoC,” in Proc. Int. Workshop Netw. Chip Architectures, 2014,
pp. 19–24.

[24] A. Tavakkol, R. Moraveji, and H. Sarbazi-Azad, “Mesh connected
crossbars: A novel NoC topology with scalable communication band-
width,” in Proc. IEEE Int. Symp. Parallel Distrib. Process. Appl., 2008,
pp. 319–326.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a-penalty -@M 68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a-penalty -@M 68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a-penalty -@M 68c45b-Paper.pdf
https://aclanthology.org/W14--4012
http://www.sciencedirect.com/science/article/pii/S0893608097000117
http://www.sciencedirect.com/science/article/pii/S0893608097000117
https://github.com/sandialabs/cross-sim
https://github.com/sandialabs/cross-sim
https://doi.org/10.1145/3291054
https://doi.org/10.1145/3291054
https://www.sciencedirect.com/science/article/pii/S0925231221018555
https://www.sciencedirect.com/science/article/pii/S0925231221018555

ZHANG et al.: SIMEURO: A HYBRID CPU-GPU PARALLEL SIMULATOR FOR NEUROMORPHIC COMPUTING CHIPS 2781

[25] L. Bononi, N. Concer, M. Grammatikakis, M. Coppola, and R. Locatelli,
“NoC topologies exploration based on mapping and simulation models,”
in Proc. 10th Euromicro Conf. Digit. Syst. Des. Architectures Methods
Tools, 2007, pp. 543–546.

[26] Y. S. Yang and Y. Kim, “Recent trend of neuromorphic computing hard-
ware: Intel’s neuromorphic system perspective,” in Proc. Int. SoC Des.
Conf., 2020, pp. 218–219.

[27] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, and T. Masquelier,
“SpykeTorch: Efficient simulation of convolutional spiking neural net-
works with at most one spike per neuron,” Front. Neurosci., vol. 13, pp. 625,
2019, doi: 10.3389/fnins.2019.00625.

[28] R. Preissl et al., “Compass: A scalable simulator for an architecture for
cognitive computing,” in Proc. Int. Conf. High Perform. Comput. Netw.
Storage Anal., 2012, pp. 1–11.

[29] K. Minkovich, C. M. Thibeault, M. J. O’Brien, A. Nogin, Y. Cho, and
N. Srinivasa, “HRLSim: A high performance spiking neural network
simulator for GPGPU clusters,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 2, pp. 316–331, Feb. 2014.

[30] T. Luo et al., “An FPGA-based hardware emulator for neuromorphic chip
with RRAM,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 39, no. 2, pp. 438–450, Feb. 2020.

[31] M. Kolasa and R. Długosz, “An advanced software model for optimization
of self-organizing neural networks oriented on implementation in hard-
ware,” in Proc. 22nd Int. Conf. Mixed Des. Integr. Circuits Syst., 2015,
pp. 266–271.

[32] M. Khalil-Hani, V. P. Nambiar, and M. N. Marsono, “Co-simulation
methodology for improved design and verification of hardware neural
networks,” in Proc. IEEE 39th Annu. Conf. Ind. Electron. Soc., 2013,
pp. 2226–2231.

[33] MPI, “Open source high performance computing,” Accessed: May
30, 2022. [Online]. Available: https://www.open-mpi.org/

[34] Nvidia, “Cuda programming guide,” Accessed: Oct. 30, 2022.
[Online]. Available: https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html

[35] W.-C. Tsai, Y.-C. Lan, Y.-H. Hu, and S.-J. Chen, “Networks on chips:
Structure and design methodologies,” J. Elect. Comput. Eng., vol. 2012,
2012, Art. no. 2.

[36] J. Flich, Flow Control. Boston, MA, USA: Springer, 2011, pp. 683–689.
[Online]. Available: https://doi.org/10.1007/978--0-387-09766-4_316

[37] S. Ansari and G. Surumi, “A modified NoC router architecture with fixed
priority arbiter,” Int. J. Sci. Res., vol. 4, no. 10, pp. 923–928, 2015.

[38] M. Lai, L. Gao, N. Xiao, and Z. Wang, “An accurate and efficient perfor-
mance analysis approach based on queuing model for network on chip,”
in Proc. Int. Conf. Comput.-Aided Des., 2009, pp. 563–570.

[39] Z. Qian, D.-C. Juan, P. Bogdan, C.-Y. Tsui, D. Marculescu, and R. Mar-
culescu, “A comprehensive and accurate latency model for network-on-
chip performance analysis,” in Proc. 19th Asia South Pacific Des. Autom.
Conf., 2014, pp. 323–328.

[40] W. Dai and N. E. Jerger, “Sampling-based approaches to accelerate
network-on-chip simulation,” in Proc. IEEE/ACM 8th Int. Symp. Netw.-
on-Chip, 2014, pp. 41–48.

[41] ABCI, “ABCI supercomputer,” Accessed: Jun. 30, 2022. [Online]. Avail-
able: https://abci.ai/

[42] kriz, “Cifar10 dataset,” Accessed: May 30, 2021. [Online]. Available:
https://www.cs.toronto.edu/%7Ekriz/cifar.html

[43] NVIDIA, “Random number generation on NVIDIA GPUs,” Accessed:
May 30, 2021. [Online]. Available: https://developer.nvidia.com/curand

[44] NVIDIA, “NVIDIA a100 datasheet,” Accessed: May 30, 2021. [On-
line]. Available: https://www.nvidia.com/content/dam/en-zz/Solutions/
Data-Center/a100/pdf/nvidia-a100-datasheet.pdf

[45] Z. Wang et al., “NCPower: Power modelling for NVM-based neuromor-
phic chip,” 2020. [Online]. Available: https://doi.org/10.1145/3407197.
3407619

[46] Y.-L. Chen, C.-C. Lu, K.-C. Juang, and K.-T. Tang, “Conversion of
artificial neural network to spiking neural network for hardware imple-
mentation,” in Proc. IEEE Int. Conf. Consum. Electron. - Taiwan, 2019,
pp. 1–2.

[47] N.-D. Ho and I.-J. Chang, “TCL: An ANN-to-SNN conversion with
trainable clipping layers,” in Proc. 58th ACM/IEEE Des. Autom. Conf.,
2021, pp. 793–798.

[48] Y. Ji et al., “NEUTRAMS: Neural network transformation and co-design
under neuromorphic hardware constraints,” in Proc. IEEE/ACM 49th
Annu. Int. Symp. Microarchitecture, 2016, pp. 1–13.

[49] C. Zou, X. Cui, Y. Kuang, and X. Wang, “Mapping convolutional neural
networks onto neuromorphic chip for spike-based computation,” in Proc.
China Semicond. Technol. Int. Conf., 2021, pp. 1–3.

[50] J. Yang et al., “Quantization networks,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 7300–7308.

[51] V. P. Nambiar et al., “0.5v 4.8 pj/sop 0.93uw leakage/core neuromorphic
processor with asynchronous NoC and reconfigurable lif neuron,” in Proc.
IEEE Asian Solid-State Circuits Conf., 2020, pp. 1–4.

[52] M. M. Wong et al., “A 2.1 pj/sop 40 nm SNN accelerator featuring on-chip
transfer learning using delta STDP,” in Proc. IEEE 51st Eur. Solid-State
Device Res. Conf., 2021, pp. 95–98.

Huaipeng Zhang received the master’s degree in
computer engineering from the Shenyang University
of Technology, in 2003, and the master’s degree in
knowledge engineering from the National Univer-
sity of Singapore, in 2019. He is currently a senior
research engineer with the Institute of High Per-
formance Computing (IHPC), Agency for Science,
Technology and Research (A*STAR), 1 Fusionop-
olis Way, #16-16 Connexis, Singapore 138632, Re-
public of Singapore. His areas of Interests include
high-performance computing, simulation, machine
learning.

Nhut-Minh Ho received the PhD degree from the
National University of Singapore, in 2020. He is
currently a postdoctoral researcher with the Depart-
ment of Computer Science, National University of
Singapore. His research interests include approximate
computing and GPU code optimization.

Dogukan Yigit Polat received the bachelor’s degree
in computer engineering from Bilkent University,
Turkey, in 2018. He is currently working toward the
PhD degree with the National University of Singapore
since 2019, and he worked as a software engineer for a
year after his graduation. His research lies in lossless
conversion from conventional Artificial Neural Net-
works (ANNs) to Spiking Neural Networks (SNNs),
training noise resistant ANNs to be deployed on SNN
hardware with noisy Resistive Memory (ReRAM)
systems and Neural Architecture Search (NAS) for

network models to be deployed on highly constrained hardware platforms such
as SNN chips.

Peng Chen received the BE degree in navigation
from Dalian Maritime University, China, in 2005,
the ME degree in traffic information engineering and
control from Shanghai Maritime University, China, in
2007, and the PhD degree from the Tokyo Institute of
Technology, Japan, in 2020. He is a researcher with
the National Institute of Advanced Industrial Science
and Technology (AIST). Also, he is working as a vis-
iting scientist with RIKEN Center for Computational
Science (RIKEN-CCS), Japan. His research interests
include parallel computing, image processing, and
machine learning.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.3389/fnins.2019.00625
https://www.open-mpi.org/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1007/978--0-387-09766-4_316
https://abci.ai/
https://www.cs.toronto.edu/%7Ekriz/cifar.html
https://developer.nvidia.com/curand
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://doi.org/10.1145/3407197.3407619
https://doi.org/10.1145/3407197.3407619

2782 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

Mohamed Wahib received the PhD degree in com-
puter science from Hokkaido University, Japan, in
2012. He is currently a team leader of the “High Per-
formance Artificial Intelligence Systems Research
Team” with RIKEN Center for Computational Sci-
ence (R-CCS), Kobe, Japan. Prior to that he worked
as is a senior scientist with AIST/TokyoTech Open
Innovation Laboratory, Tokyo, Japan. His research
interests revolve around the central topic of high-
performance programming systems, in the context
of HPC and AI. He is actively working on several

projects including high-level frameworks for programming traditional scientific
applications, as well as high-performance AI.

Truong Thao Nguyen received the BE and ME
degrees from the Hanoi University of Science and
Technology, Hanoi, Vietnam, in 2011 and 2014, re-
spectively, and the PhD degree in informatics from the
Graduate University for Advanced Studies, Japan, in
2018. He is currently working with Digital Architec-
ture Research Center, National Institute of Advanced
Industrial Science and Technology (AIST), where he
focuses on the topics of High Performance Comput-
ing system, Distributed Deep Learning and beyond.

Jintao Meng received the BS and MS degrees in
computer science from Central China Normal Uni-
versity, Wuhan, in 2005 and 2008 respectively, and
the PhD degree in computer architecture from the In-
stitute of Computing Technology, Chinese Academy
of Sciences, Beijing, in 2016. He is an associate
researcher with the Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences. His re-
search interests include high performance computing,
bioinformatics, and graph computing.

Rick Siow Mong Goh received the PhD degree in
electrical and computer engineering from the Na-
tional University of Singapore. He is the director
of the Computing & Intelligence (CI) Department,
Institute of High Performance Computing, Agency
for Science, Technology and Research, Singapore,
where he leads a team of more than 80 scientists
in performing world-leading scientific research, de-
veloping technology to commercialization, and en-
gaging and collaborating with industry. His current
research interests include artificial intelligence, high-

performance computing, block chain, and federated learning.

Satoshi Matsuoka received the PhD degree from the
University of Tokyo, in 1993. He had been a full
professor with the Global Scientific Information and
Computing Center (GSIC), The Tokyo Institute of
Technology since 2001, and the director of the joint
AIST-Tokyo Tech. Real World Big Data Comput-
ing Open Innovation Laboratory (RWBC-OIL) since
2017, and will become a Specially Appointed pro-
fessor with Tokyo Tech starting 2018 along with his
directorship with R-CCS. He has been the leader of
the TSUBAME series of supercomputers that have

won many accolades such as world no. 1 in power-efficient computing. He also
leads various major supercomputing research projects in areas such as parallel
algorithms and programming, resilience, green computing, and convergence of
big data/AI with HPC. He has been a major driving force behind the development
of the next-generation flagship supercomputer of Japan, the supercomputer
Fugaku. In June 2020 Fugaku won the first place in four major rankings of
supercomputer performance, Top500, HPCG, HPL-AI, and Graph500.

Tao Luo received the bachelor’s degree from the
Harbin Institute of Technology, Harbin, China, in
2010, the master’s degree from the University of Elec-
tronic Science and Technology of China, Chengdu,
China, in 2013, and the PhD degree from the School of
Computer Science and Engineering, Nanyang Tech-
nological University, Singapore, in 2018. He is cur-
rently a senior research scientist and group leader
with the Institute of High Performance Computing,
Agency for Science, Technology and Research, Sin-
gapore. His current research interests include high-

performance computing, quantum computing, reconfigurable computing sys-
tem, hardware.software co-exploration, efficient artificial intelligence, and its
application.

Weng-Fai Wong (Senior Member, IEEE) received
the BSc degree from the National University of Sin-
gapore, in 1988, and the DrEngSc degree from the
University of Tsukuba, Japan, in 1993. He is cur-
rently an associate professor with the Department of
Computer Science, National University of Singapore.
His research interests include computer architecture,
compilers, and high-performance computing.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on July 05,2024 at 02:27:44 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

