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Abstract: We proposed an ultra-fast memory efficient parallel list ranking algorithm, MEP-Ranking. 

MEP-Ranking has the lowest complexity on both computation and memory usage by updating traditional list 

ranking algorithm with two extra variables “lend” and “rend”. In addition, it adopts independent set to avoid the 

potential operation contention between neighbor nodes. In each communication round, every node in independent 

set bridges its left neighbor and right neighbor by adding edges with new distance, then all nodes in this 

independent set are excluded from previous linked lists. The probability of one node being selected into the 

independent set is about 1/3. According to the stop criterion of selecting independent set, the number of 

communication round of MEP-Ranking is different. It is bounded by log(p) if the selection step stops when the 

number of nodes in the reminding lists is less than (n/p), where n is the number of nodes in linked lists, and p is the 

number of processors, or O(log w) if  all nodes in the remaining lists are end nodes, where w is the length of 

longest linked list. The complexity of computation and communication on both stop criteria is bounded by O(n), 

specially the memory usage is lowest and bounded by O(n). Experimental results confirm the above complexity 

analysis, and the MEP-Ranking implementation on GPS has achieved a speedup of 4X when the number of workers 

increases from 8 to 48. 

Key words: list ranking; independent set; algorithm complexity; parallel algorithm 

摘  要: 本文提出了一种高效的并行 list ranking 算法，MEP-Ranking. 该算法通过在已有的 list ranking 算

法中加入两个额外的新的变量”lend”和”rend”用于记录独立集的选取切换的状态，从而在空间复杂度和时间复

杂度上均达到该算法复杂度下限。此外该算法使用独立集来避免相邻节点潜在的读写冲突。在每一轮计算中，
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独立集中的每个节点将会把左边的邻居和右边的邻居通过增加一条边来互相关联起来，同时边的长度为原来

两条边的和。接着独立集中的每个节点都会被从原来的链表中暂时去掉。其中每个节点中被选中为中介节点

的概率为 1/3. 根据 MEP-Ranking 的停止选举独立集的条件, MEP-Ranking 的计算轮数是不同的。如果停止条

件是当每个链表中的节点数小于 n/p 时，这里是总的节点数，p 是总的核心数， 那么计算轮数趋近于 O(log(p)). 

如果停止条件是当每个链表中的节点都只剩下两端节点时，那么计算轮数趋近于 O(log w)， 这里 w 是最长

的一个链表的长度。最后在这两种情况下该算法的计算复杂度，通讯复杂度，空间复杂度都是线性复杂度 O(n). 

实验结果验证了上述算法复杂度，同时在 GPS 上实现的 MEP-Ranking 在核心数从 8 扩展到 48 核心时可以加

速 4 倍。 

 

关键词: 链表排序; 独立集; 算法复杂度; 并行算法 
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1   Introduction 

List ranking is a very popular subroutine for obtaining numerous parallel tree and graph algorithms [1,2,3]. The 

list ranking algorithm can be generalized as to compute prefix or suffix sums [4, 5] for associative operators by 

replacing the addition operation for node distances with a respective associative operator.  

List ranking also plays a central role in graph concatenation in genome assembly problem [6, 7]. Each linked list 

in De Bruijn graph constructed from the sequencing reads needs to be concatenated into one edge. Most De Bruijn 

graphs constructed for large genomes are enormous, for example, the sequencing data from human can generate 

twenty billon nodes. These de bruijn graphs are generally distributed in a cluster or cloud. On these parallel systems 

with distributed memory, ranking the lists brings locality to this problem, and greatly minimizes the complexity of 

communication on post-processing task.  

Improvement of list ranking algorithms generally follows the evolution of computational models, which has a 

roadmap from Von Neumann‟s RAM model, PRAM to BSP [8]. The basic approach for list ranking in RAM is 

“pointer jumping” [4, 9], and this is the simplest solution which has a computation workload of O(nlogn). Several 

PRAM list ranking algorithms have been proposed [11-14], and according to the contention resolving strategy they 

can be divided into deterministic algorithms and randomized algorithms. For deterministic algorithms, pioneer 

works are “k-ruling set” technology[10,11]. With n/logn processors, Anderson and Miller‟ work has a complexity of 

O(log(n)) for each processor, and the total computation workload can be reduced to O(n)[11]. For randomized 

algorithms, the “independent set” technology is used to improve the list ranking algorithm [12]. During each round 

a subset of nodes is selected as the independent set, and excluded after bridging their neighbors. With this strategy 

the size of nodes in the remaining lists can be reduced by a constant factor in every round. Reid-Miller‟s 

randomized algorithm, which uses the “sparse-ruling-set” algorithm [1, 13] can achieve a complexity of 

O(n/p+log2n) for each processor, and a total workload of O(n+plog2n).  

As the h-relation at each superstep in BSP [8, 14] is time consuming, minimizing the number of communication 

round is the main concern in design algorithms on BSP model. Profound contributions on this issue in list ranking 

includes [4, 9, 15-16]. In 1997, Frank Dehne proposed a randomized parallel list ranking algorithm using “k-ruling 

set” method [15], the communication round of his work is limited by log(p), and its computation complexity is 

O(n). Two years later Sibeyn developed a new algorithm using sparse ruling set approach [1, 16], which requires 

only 6 2 logd longn     communication round and has a total communication size of
3ln 6ln
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here d is the number of recursion steps. This algorithm can handle the length of list up to 200 million in practice. In 

2002, Isabelle Guerin Lassous presented a portable list ranking solution using independent set methods [4], which 

has limited communication round by O(logp) and the complexity of computation and communication by O(n). 

With the widely usage of cloud [17, 18] on storing and processing large volume of data, Pregel [19]  as an 

example provides a portable framework for programming the graph algorithm on the cloud. As a vertex centric 

approach, Pregel and its implementations [20-24] are flexible enough for a broad set of algorithms, and these 

implementations automatically inherit Pregel‟s advantages on efficiency, scalability and fault-tolerance. However 

some graph algorithms need to modify two adjacent vertexes at the same time, this is difficult to implement on 

Pregel. To design a contention-avoiding mechanism for Pregel is one of the key issues [11, 25]. List ranking, is a 

representative example of this type of algorithms, and in this paper we aim at addressing this challenge. 

In this paper, we propose a practical non-recursive parallel list ranking algorithm, MEP-Ranking. MEP-Ranking 

can avoid the potential operation contention between neighbor nodes by selecting a subset of nodes in each 

communication round in which no two nodes are neighbors. This subset is called an independent set. In each 

communication round, every node in independent set has to bridge its left neighbor and right neighbor by adding 

edges with new distance, then all nodes in the independent set is excluded from previous linked lists. In each 

communication round, a proportion of nodes in the linked lists are selected into independent set and then removed, 

and the proportion in this paper is proved to be about 1/3. According to the stop criterion of selecting the 

independent set, the number of communication round of MEP-Ranking is different. It is  limited by log(p) if the 

number of nodes in the reminding lists is less than (n/p), or O(log w) if  all nodes in the remaining lists are end 

nodes, where w is the length of longest list. The complexity of computation and communication on both stop 

criterion are bounded by O(n). 

 

A practical Pregel framework, GPS, is selected to develop our MEP-Ranking. As a non-recursive algorithm, 

MEP-Ranking can be easily implemented on GPS. Experimental results show that our implementation has the 

following three properties:  

1. If the stop criterion is that all nodes in the remaining lists are end nodes, the number of communication 

round of MEP-Ranking is linearly related to the length of longest list in the set of linked lists.  

2. When the length of longest list is fixed, the number of communication round on processing the linked list is 

nearly the same. The total running time grows slowly with the increasing time usage of each communication round, 

 

Figure 1. A linked list with five nodes are given in figure 1 (a), three internal nodes are colored green and two 

end nodes are colored blue. The initial value (l[v], r[v], ldist[v], rdist[v]) is given for each node v. The final 

rank value (lend[v], rend[v], ldist[v], rdist[v]) is given in figure 1 (b). 
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which is caused by the gradually increasing workload in each superstep. 

3. Given a set of linked list with 50 million nodes, the time usage decreases when the number of workers 

increases from 8 to 48.  A speedup of 4X is achieved by our implementation on GPS.  

The rest of this paper is organized as follows: the list ranking problem is introduced in section 2, and then we 

present the algorithm of MEP-Ranking in section 3. The performance and scalability results of MEP-Ranking are 

given in Section 5. Section 6 concludes this paper.  

 

2   List Ranking Problem 

List and list ranking. List consists with nodes which are linked together, such that every node has one left 

neighbors and one right neighbor, except for the left end node and the right end node. List ranking determines the 

rank of every node, which is a node‟s distance to both its left and right end node of the list [1,2,3]. Our work 

follows the assumptions listed below:  

 A set of linked lists L contains n listed nodes. In all these lists, the longest linked list is denoted as W, 

and its length is w. 

 Each node v in L has a left neighbor l[v] and a right neighbor r[v], except for the left end node and the 

right end node. 

 p processors or workers in a cloud are used to solving the list ranking problem. Each processor or 

worker i holds a subset of list-nodes. For a given node v, it will be stored in processor v%p. 

Following the above three assumptions, one example of list ranking problem and its solution is given in figure 1. 

The description of list ranking problem can be summarized as below: 

Definition 1. For a set of linked lists L, list ranking includes two operations: (1) label each node v in L with its 

left and right end node (lend[v], rend[v]), (2) compute the rank of each node, that is the distance to its left and right 

end node (ldist[v], rdist[v]). 

3   List Ranking Algorithm 

In this section, we first describe MEP-Ranking，and then present the detail analysis on the communication round, 

and complexity of computation, communication, memory usage. Unlike most previously published recursive 

algorithms, MEP-Ranking is suitable to be implemented on Pregel, and this will be discussed in section 4. 

3.1   Description of MEP-Ranking Algorithm 

Independent set is first introduced by Jaja in 1992 [12], MEP-Ranking uses this technology to avoid the 

contention between neighbor nodes. Given a set of nodes in linked lists L, an independent set is a subset I of L such 

that no two items in I are neighbors in the linked lists. In fact such a set I only contains internal nodes, i.e. nodes 

that are not the terminal nodes of the sublists. These nodes in I are „shortcut‟ in the algorithm: they can help 

exchange information between their left and right neighbors in order to connect the two neighbors directly. There 

are three advantages on using independent set in MEP-Ranking:  

1. Independent set can be constructed in one communication round.  

2. Independent set can help exchange data between its two neighbors, which is the key to shrink the length of 

the list. 

3. In each communication round, independent set gives an order on shrinking the original list, which can avoid 

the contention of shrinking two neighbors at the same time. 
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Algorithm 1. MEP-Ranking algorithm 

The major steps of MEP-Ranking is described in Algorithm 1. Explanations of this algorithm are given below: 

Line 1: Each round of the while loop corresponds to one communication round. MEPrank has two stop 

criterions:  

1. The number of nodes in the remaining lists is less than n/p ,  

2. All nodes in the remaining lists are end nodes. 

Two stop criteria have direct effects on the number of communication round. Users can select one stop criterion 

according to their requirements. 

Line 2:  The independent set subroutine is used to select a subset I from the nodes in linked list L. The 

remaining nodes in L are denoted as D. Here the probability that one node is selected into the independent set is 

denoted as ɛ,  

I

L
  ,                                                   (1) 

where  I  and  L   is the number of nodes in the independent set I and the set of linked lists L. This 

independent set subroutine and the value of proportion ɛ are to be discussed in the next subsection. 

Line 3: A node v in the independent set I exchanges information by sending messages (r[v]; rdist[v]) and (l[v]; 

ldist[v]) to its left neighbor l[v] and right neighbor r[v], respectively. 
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Line 4: For a node v in independent set I, its two neighbors l[v] and r[v] will keep their previous neighbor v in 

or[l[v]] and ol[r[v]] respectively. These two values will be used to restore the original linked list in later steps. 

Then l[v] and r[v] will be updated to be interconnected accordingly. 

Line 5: If the stop criterion in Line 1 has been satisfied, all the remaining nodes will be sent to one processor 

 

Figure 3. An example illustrates the bottom-up part of algorithm 1. In communication round 4, node 1 and 

node 5 send messages of their rank value (lend, rend, ldist, rdist) (1, 5, 0,4) and (1, 5, 4, 0) to node 3. Then 

in round 5, after received these messages, node 3 can compute out its rank value (1, 5, 2, 2) using its 

previous value of ldist[3] and rdist[3],.  Then node 3 sends messages of its rank value to node 2 and node 

4. Finally node 2 and node 4 will calculate their rank value with the message received from node 3. 

 

Figure 2. An example for the top-down part of algorithm 1. In communication round 1, node 2 and node 3 are 

selected into the independent set, here we color them red. After receiving messages from round 1, node 1 and 

node 3, node 3 and node 5 are connected; at the same time node 2 and node 4 are excluded from the original 

list. In order to restore the original list ol[v] and or[v] are used to store each node‟s previous value of l[v] and 

r[v]. The same situation happens in round 3, and node 3 are selected and excluded from the list.  Finally after 

round 3, only two end nodes are left, and the top-down part stops.  
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and ranked sequentially using the pointer jumping algorithm introduced in [1,2]. 

Line 6: Each round of the while loop corresponds one communication round. 

Line 7: Every nodes v in current set L will send its left end node lend[v] and the corresponding distance 

ldist[v], and right end node rend[v] and the corresponding distance rdist[v] to ol[v] and or[v], respectively. 

Line 8: After receiving the rank value (lend; rend; ldist; rdist) from its neighbors, each node v calculates its 

rank value (lend[v], rend[v], ldist[v], rdist[v]). 

Note that each while loop in line 0 and line 6 invokes one communication round. In algorithm 1, we can divided 

the pseudo-code into two part, the first part from line 0 to line 5 is the  top-down part, which continuously shrinks 

the set of nodes using independent set, and the second part from line 6 to line 10 is the bottom-up part, which 

reversely restores the linked list and computes the rank value for each internal node. An example the top-down and 

bottom-up part of algorithm 1 with the second stop criterion are illustrated in figure 2 and figure 3.   

The number of communication round of MEP-Ranking with these two stop criterions is given by lemma 1 and 

lemma 3 respectively.  

Lemma 1. Given a set of linked lists with n nodes, in each communication round one node has a probability of ɛ 

being selected into the independent set and excluded from the original linked lists, and this process stops when the 

number of nodes in current linked lists is less then n/p. The total number of communication round 

is 1
1

(log )O p


. 

Proof: we can denote the number of communication round as t, then the number of remaining nodes after t 

communication round is  (1 ) /tn n p   , and we can get,  

1
1

logt p


                                       (2) 

Lemma 2.  Given linked list with n nodes,  in each communication round one node has a probability of ɛ being 

selected into the independent set and excluded from the original linked list, this process stops when  all nodes in the 

remaining list are end nodes. The total number of communication round is 1
1

(log )O n


. 

Proof:  The number of communication round is written as t, then the number of remaining nodes after t 

communication round is  (1 ) 2tn    , and we can get, 

1 1 1
1 1 1

log log 2 logt n n
    

               (3) 

Lemma 3. Given a set of linked lists L with n nodes, the set of lists is written as 1 1{ , , , }kl l l , and the length 

of these lists is 1 1{ , , , }kw w w , here the length of the longest link list is w. If the stop criterion on selecting the 

independent set is that all nodes in the remaining list are end nodes. The total number of communication round 

is 1
1

(log )O w


. 

Proof:  According to Lemma 2, the number of communication round t should be bounded by:  

  1 1
1 11

log logmax
k

i
i

t w w
  

                    (4)  
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According to Lemma 3, the number of communication round has no direct relation with the total number of nodes in 

linked lists, it increases linearly with the logarithm of the length of longest linked list. 

In algorithm 1, each while loop in line 0 and line 6 will invoke one communication round.  In the top-down 

part, each node in the independent set communicates (sending packets) only a constant number of times (at most 

two times) within every communication round; in the  bottom-up part, each node in previous independent set 

communicates (receiving packets) at most two times. As each node can be selected into independent set only once, 

then the communication complexity of MEP-Ranking is O(n). Only two extra arrays ol and or are introduced into 

algorithm 1, then the memory usage is bounded by O(n). 

3.2   Description of MEP-Ranking Algorithm 

The independent set subroutine is the key part of MEP-Ranking algorithm. In order for MEP-Ranking algorithm to 

have the computational complexity within O(n), the independent set subroutine has to keep its computational 

complexity bounded by O(n), The independent set subroutine is presented in algorithm 2, and we will prove that 

algorithm 2 meets the above requirements.  

 

Algorithm 2. Independent set algorithm. 

According to algorithm 2, each node v in a given set L generates a random number A[v] in the interval [1, K]. For 

any node v, v can be included in the independent set I, if and only if its random number A[v] is larger than or equal 

to its left neighbor l[v], A[v]≥A[l[v]], and strictly larger than its right neighbor r[v], A[v] > A[r[v]].  The 

following lemma is given to calculate the probability of one node being selected into independent set.  

Lemma 4. Given three random number x, y, z in the interval [1, K], the probability of x y  and x z  is:  

      1 2

1 1
(1 )

3 K
                       (5) 

Proof. The observed probability of x larger or equal to y will be x
K

 and the probability of x larger than z is 

1x
K

 . Finally the total probability over all values of x for x y  and x z  is: 

     

2

1 2 2 2
1

1 1 1
{ } (1 )

3

K

i

i i

K K K K




        (6) 

According to Lemma 4, the expected size of independent set I is:  

2

1 1
( ) (1 )

3
E I L

K
           (7) 
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Here |I| denotes the number of nodes in I, and |L| denotes the number of nodes in L. 

When K is a large number, then the expected probability of one node v in L being selected into independent set I 

is: 

2 1 2

1 1 1
lim lim (1 )

3 3K K K
 

 
                     (8) 

Then the expected size of independent set I is:  

2

1
( )

3
E I L L  , when K  .      (9) 

From equations (8) and (9), the number of nodes in linked lists will shrink 1/3 at each communi cation round.  

It is clear that the computation complexity of algorithm 2 is O(n), here n is the number of nodes in all input linked 

lists. The computation complexity of algorithm 1 on selecting independent set is:  

1 1

1 1 1

1 1 1

(1 ) (1 )
1

t
i i

i i

n
C n n 




 

 

    


       (10) 

When K  , we have 

2

3

2
C n              (11) 

From equations (10) and (11), the computation complexity of selecting independent set in algorithm 1 is O(n) 

regardless of the value of K. As two communications on sending and receiving message will recall one computation 

operation, the actual computation work in the other part of algorithms 1 is proportional to the number of 

communications. These computation work can also been bounded by O(n). Overall, the computation complexity of 

algorithm 1 is O(n). 

In this section, we have presented a non-recursive algorithm on list ranking, MEP-Ranking. More importantly, we 

have shown MEP-Ranking has its computation, communication and memory usage complexity limited by O(n). 

Compared with previous works, this has the lowest complexity limit. The communication round of MEP-Ranking is 

O(logp) if MEP-Ranking adopts the first stop criterion, and O(logw) if MEP-Ranking adopts the second one. 

 

4   Experiments and Performance Evaluation 

MEP-Ranking has been implemented on GPS [24], a practical implementation of Pregel. In the experiment we 

use a high performance cluster with 6 servers; each server has 8 cores with 2.4GHz, 24 GB memory and 2.4T 

storage, and the operation system is CentOS 5.5. All these servers are interconnected with 1Gbit twisted-pair cables. 

The following parts of this section will evaluate and analyze the performance of MEP-Ranking algorithm on GPS. 

4.1   Complexity evaluation 

Firstly, we evaluate how the length of longest list affects the running time of MEP-Ranking. Seventeen datasets 

were generated with each having 10 linked lists. The maximum length of linked list in these datasets is from 1K to 

8192K. Experimental results on the number of communication round and time usage are demonst rated in figure 4 

and figure 5, respectively. 
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In figure 4, the number of communication round increases linearly when the maximum length of linked list is 

growing exponentially.  The same trend can also been seen in figure 5, where the time usage of MEP-Ranking also 

increases linearly. The experimental results confirm that the number of communication round and running time is 

linearly related to the logarithm of the length of longest linked list, which is consistent with our complexity analysis 

in section III. 

Next, we have fixed the length of linked list to be 100K, and generated another series of datasets by increasing 

the number of linked lists from 10 to 100. Experimental results on the number of communication round, time usag e 

and average of time usage at each communication round are illustrated in figure 6, 7, 8.  

Table.1 The running time and communication round statistics on MEP-Ranking algorithm processing 500 

linked lists with a length of 100k. 

Number of 

processors 
Number of 

supersteps 

Total Time 

usage(seconds) 

Time usage per 

superstep 

(seconds) 
8 134 1688.7 12.6 

16 147 989.1 6.73 
24 152 714.2 4.7 
32 138 570.4 4.13 
40 131 468.9 3.58 
48 129 426.7 3.31 

According to figure 6, the number of communication round holds its value around 125 supersteps and varies 

between 120 and 140 supersteps. However the time usage of MEP-Ranking in figure 7 is growing steadily when the 

number of linked lists increases from 10 to 100. More detail can be found in figure 8, where the average t ime usage 

in one communication round sharing the same trend with the total time usage of MEP-Ranking. As the 
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Figure 4. The number of communication round of 

MEP-Ranking implementation on processing linked list 

with its length from 1K to 8192K. 
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Figure 5. The time usage of MEP-Ranking 

implementation on processing linked list with its length 

varying from 10K to 100M. 
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communication and computation workload in one processor have a complexity of O(n/p),  here n is the number of 

nodes in the linked lists, the workload and time usage in one communication round will increase along with the 

expending problem size n. 

 

4.2   Scalability evaluation 

In order to evaluate the scalability of MEP-Ranking, we have randomly created a dataset including 500 linked 

lists with a length of 100k in average, and this dataset has 107 nodes in total. The simulation results are illustrated in 

Table.1. 

In table 1, the number of communication round (supersteps) on processing this dataset is almost constant when 

the number of workers increases from 8 to 48. However the overall running time of MEP-Ranking is decreasing 

following a trend of decreasing time usage on each superstep, and more than 4 times speedup has been achieved 

when the number of workers scales from 8 to 48. Finally we conclude that, given a fixed dataset of linked list, the 

running time per superstep deceases when the number of jobs increases and the number of communication round 

remains constant. 

5   Conclusion 

List ranking is the kernel in genome assembly. However a parallel practical solution for enormous large volume of 

data is still a hard problem for many years. This situation blocks many genome assembly projects on the cloud, such 

as SOAP-Hecate and Contrail.  
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Figure 6. The number of communication rounds when the 

number of linked lists with fixed length increases from 10 to 

100. 
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Figure 7. The time usage with GPS when the number of 

linked lists with fixed length increases from 5 to 100. 
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In order to radically change this situation, we have proposed a MEP-Ranking algorithm for list ranking problem. 

MEP-Ranking has its communication, computation, and memory usage complexity bounded by O(n), and this 

reaches the lower bound  among its previous solutions. According to the stop criterion of selecting independent set, 

the number of communication round of MEP-Ranking is different. It is limited by log(p) if the number of nodes in 

the reminding lists is less than (n/p), or O(logw) if  all nodes in the remaining lists are end nodes, where p is the 

number of processors, n is number of nodes in linked lists, w is the length of longest list.  As a non-recursive 

solution, MEP-Ranking can be directly implemented on Pregel system. In the experiment, we have developed 

MEP-Ranking algorithm on GPS, which is a practical implementation of Pregel on hadoop map-reduce platform, 

statistical results confirm the above complexity analysis, and the MEP-Ranking implementation on GPS has 

achieved a speedup of 4X when the number of workers increases from 8 to 48. 

Acknowledgement This work is supported by National Science Foundation of China under grant No. 11204342, the 

Science Technology and Innovation Committee of Shenzhen Municipality under grant No. 

JCYJ20120615140912201. The authors also thanks for the computing resources provided by Dawning TC5000 

supercomputing cluster, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. 

References:  
[1]   Reid-Miller M. List ranking and list scan on the Cray C-90. In Proc. 6th ACM Symp. on Parallel Algorithms and 

Architectures (SPAA‟ 94), 1994, pp. 104–113. 

[2]   Atallah M, Hambrusch S. Solving tree problems on a mesh-connected processor array, Information and Control, 1986, 
69(1-3):168-187. 

[3]   Baase S. Introduction to parallel connectivity list rankingand euler tour techniques. Synthesis of Parallel Algorithms, 
Morgan Kaufmann Publisher, 1993. 

[4]   Lassous I, Gustedt J. Portable list ranking: an experimental study. 2002, 7:7-25 

[5]   Cole R, Vishkin U. Faster optimal parallel prefix sums and list ranking. Information and Computation, June, 1989, 81(3): 
334–352. 

[6]   Jackson B, Schnable P, Aluru S. Parallel short sequence assembly of transcriptomes, BMC Bioinformatics, 2009, 10(Suppl 
1):S14. doi:10.1186/1471-2105-10-S1-S14 

[7]   Jackson B, Regennitter M, Yang X, Schnable P, Aluru S. Parallel de novo assembly of large genomes from high-throughput 
short reads. In Proc. 24th International Symposium on Parallel & Distributed Processing (IPDPS'10), April, 2010,  pp. 
1-10. 

[8]   Valiant L. A bridging model for parallel computation. Communications of the ACM, Aug. 1990, 33(8):103-111.  

[9]   Sibeyn J, Guillaume F, Seidel T. Practical parallel list ranking. Journal of Parallel and distruted computing, 1999, 
56(2):156-180.  

20 40 60 80 100
2.2

2.4

2.6

2.8

3

3.2

The number of linked lists

T
h

e 
av

er
ag

e 
ti

m
e 

u
sa

g
e 

o
f 

o
n

e

 c
o

m
m

u
n

ic
at

io
n

 r
o

u
n

d
 (

se
co

n
d

s)

 

Figure 8. The average time usage in one communication 

rounds when the number of linked lists increases from 10 to 

100. 



 

 

178     

 

[10]   Cole R, Vishkin U. Deterministic coin tossing with applications to optimal parallel list rank ing. Information and Control, 
1986, 70(1): 32-53. 

[11]   Anderson R, Miller G. deterministic parallel list ranking, Algorithmica, 1991, 6: 859-868. 

[12]   Jaja J. an introduction to parallel algorithms, Addison-Wesley, MA, 1992. 

[13]   Reid-Miller M, Miller G, Modugno F. List-ranking and parallel tree contraction, Synthesis of parallel algorithms, 1993,  
pp.115-194. 

[14]   Skillicorn D, Hill J, McColl W. Questions and answers about BSP, Scientific Programming, 1997, 6(3): 249 -274. 

[15]   Dehne F, Song S. Randomized parallel list ranking for distributed memory multiprocessors.  International journal of 
parallel programming,  1997, 25(1): 1-16. 

[16]   Sibeyn J. Better trade-offs for parallel list ranking. In Proc. 9th ACM Symposium on Parallel Algorithms and Architectures 
(SPAA‟97), 1997, pp. 221–230. 

[17]   Schatz M, Langmead B, Salzberg S, Cloud Computing and the DNA Data Race, Nature biotechnology. July, 2010, 28(7): 
691-693. 

[18]   Wall D, Kudtarkar P, Fusaro V, Pivovarov R, Patil Prasad, Tonellato P. Cloud computing for comparative genomics. BMC 
Bioinformatics , 2010, 11:259, doi:10.1186/1471-2105-11-259 

[19]   Malewicz G, Austern M, Bik A, Dehnert J, Horn I, Leiser N, Czajkowski G. Pregel: A System for Large -Scale Graph 
Processing. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, 2 010, pp. 
135-146. 

[20]   Apache Incubator Giraph. http://incubator.apache.org/giraph 

[21]   GoldenOrb. http://www.raveldata.com/goldenorb 

[22]   The apache hama project. http://incubator.apache.org/hama 

[23]   Phoebus at github. http://github.com/xslogic/phoebus 

[24]   Salihoglu S, Widom J. GPS: A Graph Processing System. Technical Report, 2012, 
http://ilpubs.stanford.edu:8090/1039/7/full_paper.pdf 

[25]   Hong S, Salihoglu S, Widom J, Olukotun K. Compiling GreenMarl into GPS. Technical Report, November, 2012. 
http://ppl.stanford.edu/papers/tr_gm_gps.pdf 


