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Boosting the predictive 
performance with aqueous 
solubility dataset curation
Jintao Meng   1,5,6, Peng Chen   2,3 ✉, Mohamed Wahib2,3, Mingjun Yang4, Liangzhen Zheng1, 
Yanjie Wei1 ✉, Shengzhong Feng5 ✉ & Wei Liu6

Intrinsic solubility is a critical property in pharmaceutical industry that impacts in-vivo bioavailability 
of small molecule drugs. However, solubility prediction with Artificial Intelligence(AI) are facing 
insufficient data, poor data quality, and no unified measurements for AI and physics-based approaches. 
We collect 7 aqueous solubility datasets, and present a dataset curation workflow. Evaluating the 
curated data with two expanded deep learning methods, improved RMSE scores on all curated 
thermodynamic datasets are observed. We also compare expanded Chemprop enhanced with curated 
data and state-of-art physics-based approach using pearson and spearman correlation coefficients. 
A similar performance on pearson with 0.930 and spearman with 0.947 from expanded Chemprop 
is achieved. A steadily improved pearson and spearman values with increasing data points are also 
illustrated. Besides that, the computation advantage of AI models enables quick evaluation of a large 
set of molecules during the hit identification or lead optimization stages, which helps further decision 
making within the time cycle at drug discovery stage.

Introduction
Aqueous solubility is one of the critical factors defining the bio-availability of orally administrated drugs. 
Reportedly, over 75% of oral drug development candidates have a low solubility based on the Bio-pharmaceutics 
Classification System (BCS)01,2. To tackle this challenge, researchers are focusing on drug solubility improve-
ments with both physics-based Quantum Mechanics-Quantitative Structure Property Relationships 
(QM-QSPR) approaches3–6 and data-driven artificial intelligence (AI) methods7–11.

The development of QM-QSPR approaches provides a large number of computational methods for aque-
ous solubility prediction starting from a molecular structure3–6. The majority of these methods try to explore 
fundamental physics-based rules with a sublimation thermodynamic cycle solubility approach2,12 on crystalline 
drug-like molecules. This approach is an interplay between crystal packing and molecular hydration free energy 
contributions12–15. With this approach, a crystal packing contribution to the drug solubility typically requires a 
sublimation energy estimation from crystal lattice calculations12–14, molecular dynamics simulations16, or QSPR 
statistical models15,17. The free energy of solvation may be estimated by a variety of approaches, including QSPR 
models, monte carlo simulations, and QM-based methods18. Recently, a study of guiding lead optimization2 was 
proposed. It explicitly describes the solid-state contribution, and the superior performance of the QM-based 
thermodynamic cycle approach is demonstrated in the optimization of two pharmaceutical series. The main 
limitations of the physics-based QM-QSPR approaches are the large compute requirements and long run time. 
For example, guiding lead optimization2 relies on crystal structure prediction calculations19, which may require 
several days on a powerful cloud infrastructure consisting of millions of CPU cores.

Early AI-based approaches for solubility prediction involve the application of logistic regression7, random 
forests8 and convolutional neural networks9 to expert-engineered descriptors10,11 or molecular fingerprints 
such as the Dragon descriptors or Morgan (ECFP) fingerprints20–22. Their predictive accuracy or equivalent 
root mean square errors (RMSE) is limited to 0.7–1.0 log. Recent research efforts are focused on graph learn-
ing23–26 of the underlying topology of molecule structure using SMILES strings27. Such models extract their 
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own expert features directly from atoms and edges, and embed them with graph convolutional networks. An 
experiment in MoleculeNet23 on solubility prediction of ESOL dataset ranks Message Passing Neural Network 
(MPNN) as the best graph learning model with a predictive accuracy of 0.58 among other graph models, such 
as WEAVE28 and GraphConv26. Chemprop24 which embeds molecule-level features and extends the Message 
Passing Neural Network (MPNN) with Directed MPNN, further improves the predictive accuracy on ESOL to 
0.56. AttentiveFP29 is the first work applying attention mechanism with a graph neural network and reports the 
lowest accuracy of 0.503 on ESOL dataset. These deep learning based approaches are trying to model complex 
physicochemical properties with a QSPR statistical approach, however their flexibility and capacity of capturing 
those complex relationships are still bounded by the availability of high quality data30–32.

The measurement and dataset diversity gap between the AI-based and QM-QSPR approaches are two crit-
ical issues hindering the research on combining these two approaches. For AI-based approaches in particular, 
different papers evaluate their work on different datasets, using different workflows, or even with different meas-
urements. In most cases, this becomes the first obstacle preventing readers from objectively distinguishing the 
viability of the proposed AI-approaches. More importantly, to the authors knowledge, no previous work con-
ducted any comparison to evaluate both AI-based and QM-QSPR approaches under the some measurements 
with an open available dataset. This situation also inhibits any quantitative analysis from exploring the advan-
tages and disadvantages of these two approaches, and the possibilities of combining them to achieve additional 
progress.

In term of data curation methodologies, previously Eriksson’s work published in 200333, takes prepossess-
ing techniques (scaling and centering), data correction, and transformations to improve the regression model’s 
performance on Quantitative Structure-Activity Relationship (QSAR). There are three different points between 
our work and Eriksson’s work. Firstly, Our work is focused specially on solubility instead of QSAR. The data 
correction using signal correction actually cannot work on our dataset, as there are no relationship between 
the solubility value and undesired variation arising from light-scattering effects, baseline drift, nonlinearities, 
and so forth. Secondly, our work is exploring data curation methodology for nonlinear deep learning model 
using graph neural networks, whereas Eriksson’s work33 is targeting on linear regression model. last, our work 
on is focused on data curation methodology itself. Eriksson’s work needs the prepossessing techniques (scaling 
and centering) and transformations steps to avoid large influence on the model and dominating over the other 
measurements from unbalanced data composition. However, these problems has been resolved in our work by 
using scaffold data partition. Our work is the only work focused on inter-dataset redundancy and intra-dataset 
redundancy, it is a novel technique not yet presented by any previous work.

To conclude the above discussion, solubility prediction with AI-based methods still face the following three 
challenges:

	 1.	 The volume of training data in previous works, such as the ESOL dataset, is limited. Training and evalua-
tion on these small datasets do not necessarily offer good performance for our problems. These datasets are 
also insufficient for sophisticated models attempting to learn massive physical-chemical rules and converge 
to a stable state.

	 2.	 Data curation methods or tools for low-quality aqueous solubility data are still lacking. Directly training on 
data with poor quality may affect the predictive accuracy.

	 3.	 None of the previous studies pose a comparison of the predictive accuracy between leading deep learning 
and state-of-the-art QM-QSPR approaches. Analyzing and determining the advantages and disadvantages 
of deep learning methods in comparison with the QM-QSPR approaches is also critical but difficult to 
achieve.

To resolve the above issues and refine the research problem of solubility prediction for AI, our contributions 
are threefold:

	 1.	 The first large-scale dataset for AI research on aqueous solubility is collected. This dataset contains seven 
aqueous solubility datasets including both thermodynamic and kinetic data. The number of records in 
these datasets ranges between a few thousand to several hundreds of thousands.

	 2.	 This work is the first to improve the aqueous solubility predictive accuracy with a data curation method. 
We present a data curation workflow of filtering, evaluating and clustering. This workflow adds solubility 
quality to each record and curates records sharing similar solubility among different datasets. We also 
expand two leading deep learning methods, i.e., Chemprop24 and AttentiveFP29, to support data quality 
during the training and evaluation process. Using these expansions of the Chemprop and AttentiveFP deep 
learning methods, improved predictive accuracy is observed on all thermodynamic datasets.

	 3.	 This work is also the first to compare deep learning and QM-QSPR approaches using the pearson and 
spearman’s rank-order correlation coefficients by predicting four pharmaceutical series of 48 molecules. 
Abramov’s guiding lead optimization and weighted Chemprop are selected as the representatives for both. 
By predicting the first two pharmaceutical series of 31 molecules, Abramov’s approach demonstrates a 
pearson correlation coefficient r2 of 0.905 and spearman’s rank-order correlation coefficient Rs of 0.967. 
Weighted Chemprop (expanded to support the high data quality) is trained on the curated dataset yielding 
improvement in its r2 and Rs values. It increases steadily with the increase in training data volume and fur-
ther achieves comparable performance on r2 with 0.930 and Rs with 0.947. In comparison with Abramov’s 
approach, which requires a large compute resources, predicting the thousands of target compounds with 
deep learning approach takes only seconds on a common desktop computer.
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The rest of this paper is organized as follows. The collection and description of seven datasets, together with 
our data curation workflow, are illustrated in Section methods. Section results compares the deep learning and 
QM-QSPR approaches and then discusses the benefits of data curation. Section discussion explains the innova-
tions and contributions this work make towards molecule property prediction.

Methods
Datasets.  We collected molecules labeled with aqueous solubility from publicly available databases or data-
sets provided by previous papers, resulting in the 7 datasets shown in Table 1. Among them, the first three data-
sets were evaluated by previous papers11,23,24,34,35 but are limited in number of samples or records, while the last 
four datasets have larger number of samples with poor data quality. We also include both thermodynamic and 
kinetic datasets; the first six are the thermodynamic datasets, while the last is the kinetic set36.

Table 1 demonstrates the statistical information of each dataset. Every dataset is processed separately to have 
the same standardized form. The data extraction process and standardization methods applied for each dataset 
are described below.

•	 AQUA. This dataset was taken from the work of Huuskonen34 and Tetko11, with 1311 records on 1307 mol-
ecules downloaded from the ALOGPS homepage at http://146.107.217.178/lab/alogps/logs.txt. The exper-
imental aqueous solubility value is measured between 20–25 °C and obtained partly from the AQUASOL 
database of the University of Arizona and SCR’s PHYSPROP database.

•	 PHYS. This dataset is a curated PHYSPROP database consisting of a collection of datasets in SDF format. An 
automated KNIME workflow37 is used to curate and correct errors in the structure and identity of chemicals 
using the publicly available PHYSPROP datasets. Here, we extract 2024 molecules with a water solubility 
(WS) endpoint. The quality of each record is measured with stars from 1 to 5; thus, the data quality property 
of “STAR_FLAG” is reserved, and finally 2010 records is reserved.

•	 ESOL. The original ESOL dataset, containing 1144 records, was first used by35, and then its verified ver-
sion was evaluated in23,24. We downloaded its verified version with 1128 records from Chemprop’s repository 
https://github.com/Chemprop/Chemprop as our ESOL dataset to keep it consistent with previous works23,24.

•	 OCHEM. This dataset is taken from the OCHEM database of WS at https://ochem.eu/. We reserve 6525 
rows from 36,450 records by selecting molecules with the dataset type “Training” to reserve molecules with 
experimental solubility values.

•	 AQSOL. This dataset38 combines 9 datasets, including the AQUA and ESOL datasets. A preprocessing step 
is used to filter this dataset by merging repetitive molecules, with 9982 records remaining. According to the 
number of occurrences in the 9 original datasets, a new property called “group” is added to this dataset by 
using a classification strategy that can group this dataset into 5 groups. We keep “group” in this dataset for 
further assignment of the weights to identify the data quality of each record.

•	 CHEMBL. This dataset is extracted from CHEMBL’s activity database, which includes 15,996,368 records at 
https://www.ebi.ac.uk/chembl. We filter this dataset with the assay type “physicochemical” and then select 
40,520 records with the standard type “Solubility” or “solubility” as our dataset. Several different units are 
used for the aqueous solubility measurement, such as nM, ug/mL, and ug.mL-1. All the units are converted 
to standard “LogS” units. We find 4,543 records are kinetic solubility data and 17 records are using oil as the 
solvent. Thus we further removed all these records to clean our CHEMBL dataset from kinetic solubility data. 
Finally 30,099 valid records are reserved. In addition, the column “Comment” describing the temperature and 
pH of the experiment is kept for later weight assignment on the data quality of each record.

•	 KINECT. This dataset is taken from the OCHEM database of WS based on the Kinect technology at https://
ochem.eu/. 164,273 records described in SDF format are extracted and collected into this dataset. In addi-
tion, the columns of properties “SMILES”, “LogS value”, “pH value” and “Temperature” are also extracted and 
reserved for quality weight assignment.

Dataset

No. of Records in

Weights
Additional Columns 
of Org DatasetOrg Cln Cure

AQUA 1311 1311 1354 1.0

PHYS 2010 2001 2001 1.0 star_flag

ESOL 1128 1116 1157 1.0

OCHEM 6525 4218 3766 0.85

AQSOL 9982 8701 9061 0.4 group

CHEMBL 30099 30099 28675 0.8 comment

KINECT 164273 82057 81935 — temperature, pH value

Table 1.  Statistical information of the number of records in the 7 collected datasets. “Org” is the original 
dataset, “Cln” denotes the dataset after Data Filtering, “Cure” is the dataset after Data Curation using the 
clustering algorithm across multiple datasets, “Weights” denotes the assigned weights for each dataset to 
identify the dataset quality, and “Additional Columns of Org Dataset” includes special properties reserved by 
some of the datasets.
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Data curation.  Due to the various experiment environments, workflows and non-unique identifications, the 
records in the aqueous solubility datasets are repetitive, erroneous or even contradictory to each other37,38. Note 
that molecules with the same SMILES may be different tautomers39, and thus have different solubility value. As 
SMILES can not distinguish tautomers thus we just keep them into different records but with different solubility 
value. We merge the two records only when the difference of these two value is less than 0.5.

The development of reliable data-driven deep learning models, however, may be hindered by uncertainties 
and disagreements in these repetitive records, which are obtained from many disparate data sources. Training 
data with systematic errors from different experimental methodologies potentially limit the predictive accuracy 
of deep learning models. To improve the predictive accuracy of deep learning methods and achieve a better 
generalization ability from low-quality and confusing data, a curation method delivering high-quality data, 
balanced on substructure classes and sufficient in terms of the data volume, is vitally important.

We present a data curation workflow of filtering, evaluating and clustering for the above 7 datasets as illus-
trated in Fig. 1. The workflow tries to improve the dataset quality by data filtering, a quality evaluation and then 
cross-dataset correction among different datasets with a clustering algorithm. Finally, an evaluation with two 
leading deep learning methods, i.e., Chemprop and AttentiveFP, demonstrates the benefits of this workflow in 
predictive accuracy improvement based on the RMSE over all thermodynamic datasets.

Data filtering.  To resolve the standardization of the molecule expressions, uncertainties from various 
experiment environments, and weight bias from repetitive data, the data filtering strategy is proposed with 
the following three steps: SMILES standardization, experiment environmental control, and repetitive record 
normalization.

•	 SMILES standardization First, each molecule has only one unique SMILES expression in different databases. 
MolVS (described at https://molvs.readthedocs.io/en/latest/) is used to standardize all chemical structures 
and maintain one unique standard SMILES for each molecule. Any molecule that fails to pass our standardi-
zation procedure is removed from the dataset.

•	 Experiment environmental control Second, we target the aqueous solubility prediction of small molecules 
in drug design. Thus, the experiment environment of molecules with temperatures of 25 ± 5 °C and pH val-
ues of 7 ± 1 are highly valued; any records beyond our scope are ranked low or even removed. Any molecule 
used for drug design should be poison-free. For this reason, molecules with heavy metals such as “U, Ge, Pr, 
La, Dy, Ti, Zr, Rh, Lu, Mo, Sm, Sb, Nd, Gd, Cd, Ce, In, Pt, Sb, As, Ir, Ba, B, Hg, Se, Sn, Ti, Fe, Si, Al, Bi, Pb, Pd, 
Ag, Au, Cu, Pt, Co, Ni, Ru, Mg, Zn, Mn, Cr, Ca, K, Li” are filtered from all datasets. “SF5,SF6” are also cleaned, 
as they are rarely used in drug design.

•	 Repetitive record normalization Third, some datasets contain repetitive molecules with equal or different 
solubility values. According to the frequency of occurrence, repetitive record normalization is carried out to 
assign weights to each molecule, with a total weighted value of 1.0, to prevent those molecules with repetitive 
values from gaining larger parameter update weights during the model training process.

The number of data records before and after our data filtering is presented in Table 1. For each cleaned data-
set, the available information in terms of the name, description, and column type are presented in Table 2. In 
the end, 1311, 2001, 1116, 4218, 8701, 30,099, and 82,057 records are in cleaned AQUA, PHYS, ESOL, OCHEM, 
AQSOL, CHEMBL, and KINECT datasets, respectively.

Quality evaluation.  Quality evaluation is performed to analyze, evaluate and assign each dataset with an appro-
priate weight to identify its quality. We first analyze the molecule redundancy among different datasets with 
identical or different solubility values. Then, we expand Chemprop and AttentiveFP to support the data quality 
weights and refer to them as weighted Chemprop and weighted AttentiveFP. weighted Chemprop is used to 

Fig. 1  The data curation workflow of filtering, evaluating, and clustering on the 7 collected datasets.
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evaluate each dataset’s predictive accuracy (measured in RMSE) to identify the dataset quality. Finally, each 
dataset is assigned a weight indicating its data quality.

The existence of data redundancy in repetitive records generate bias in the model training process and evalu-
ation metric. Several data redundancies can be found both within and among the datasets. These data redundan-
cies can be classified into two classes: those in which a given molecule was found in two records with identical 
solubility values and those in which a given molecule was found in two records with different solubility values. 
Here, we define solubility values with a 0.01 LogS unit difference between two records as identical. Notably, these 
redundancies can be found in two records from a single dataset or from two different datasets. The former case 
is normalized first by repetitive record normalization, as discussed in the previous subsection; thus, there is no 
molecules sharing the same value occur twice in a single dataset.

With the above definitions, two redundancy matrices are collected, as presented in Fig. 2, where the percent-
ages of repetitive molecules with the same and different solubility values are presented in the upper and lower 
tables, respectively. The rows or columns of these two tables represent the corresponding datasets. The percent-
age of repetitive molecules with the same solubility value between two datasets i and j is represented as Aij, and 
that with different solubility values is represented as Bij. For example, AESOL,PHYS = 43.01 indicates that 43.01% 
of the records (one molecule can have multiple records) in the ESOL dataset can be found in the PHYS dataset 
with the same solubility value. As another example, BCEHMBL,CHEMBL = 25.13 reveals that 25.13% of the records 
in the CHEMBL dataset can be found sharing the same molecule but with different solubility values in the same 
dataset. Note that the two redundancy matrices in Fig. 2 are not symmetric for different dataset sizes. The sum 
of Aij and Bij for corresponding datasets i and j can be beyond 100%, as given a record from dataset i, a molecule 
in dataset j can have multiple records and thus can share both the same and different solubility values with the 
same molecule in other datasets.

A preliminary analysis of the records in and between datasets reveals the potential value of data curation. 
In the upper table of Fig. 2, approximately half of the records in AQUA, PHYS, and ESOL share the same sol-
ubility values. Approximately 77–98% and 66% of the records in AQUA, PHYS and ESOL are contained in 
OCHEM and AQSOL, respectively. In the lower table, 9–30% of the records share different solubility values 
among AQUA, PHYS and ESOL. More than 24% and 30% of the records in these three datasets share different 
solubility values. CHEMBL has its own speciality. Both tables confirm that CHEMBL contains few records from 
other datasets, and the lower table confirms that one-quarter of the records in CHEMBL have diverse solubility 
values. Our intuition on data curation is to make use of the above record redundancies. In practice, a record for 
a given molecule with the same solubility value in more than one dataset can help us to improve the confidence 
regarding its data quality. Likewise, a record with different values among datasets can decrease the confidence 
with regard to its data quality. This is the fundamental difference between our work and a previous work38 as 
a result of selecting those records with multiple occurrences. Thus, the percentages of both inter-dataset and 
intra-dataset record redundancies will determine the effectiveness of our data curation method.

To analyze the quality of each dataset, one of the leading graph learning methods named as Chemprop is 
selected to evaluate all 7 datasets, with the predictive accuracy used as a reference. Both random and scaffold 
splitting are used in this evaluation. Here random splitting randomly splits samples into training, validation, and 
test three subsets. Scaffold40 splitting splits the samples based on their two-dimensional structural frameworks 

Column Name Description Type

Smiles SMILES representation of compound String

LogS Experimental aqueous solubility value 
(LogS) String

Weight weighted quality score in [0, 1] Float

Table 2.  List of information for all cleaned and curated datasets in terms of the name, description, and type of 
each column.

Fig. 2  Redundancy matrices showing the percentage of repetitive molecules between two datasets. The upper 
table Aij summarizes the percentages of molecules with the same solubility values, and the lower table Bij 
describes the percentages of molecules with different solubility values.

https://doi.org/10.1038/s41597-022-01154-3
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as implemented in RDKit. Scaffold splitting is a useful way of organizing the structural data to group the atoms 
of each drug molecule into ring, linker, framework, and side chain atoms. Considering that random splitting of 
molecular data isn’t always best for evaluating machine learning methods. Scaffold splitting is also applied in 
our evaluation. For the original datasets, we train each dataset with Chemprop using both random and scaffold 
data partition ratios of [0.8, 0.1, 0.1] for training, testing, and evaluation. Moreover, we ensemble 5 models to 
improve the model accuracy and record the average RMSE value and its confidence intervals by running each 
ensembled model 8 times. The RMSE value of the original dataset is recorded and collected in the third column 
of Table 3. Multiple different solubility values for a given molecule among the datasets are normalized on weights 
according to the statistical distribution of the molecule determined by the previously discussed data filtering 
process. However, Chemprop does not support weighted quality scores for records in a cleaned dataset. Thus, we 
expand the training and evaluation codes of Chemprop to support training over weighted records and rename 
it weighted Chemprop. As a result, a record with higher weighted quality has a contributes to a larger extent in 
the parameter update, whereas records with lower weights have a smaller effect. Note that when dataset contains 
no weights, weighted Chemprop treats each record equally and acts the same as Chemprop. Trained on these 7 
cleaned datasets, the corresponding prediction accuracy measured with the RMSE is collected in the fourth 
column of Table 3.

Root Mean Square Error (RMSE) is a standard way to measure the error of a model in predicting quantitative 
data, detailed definition of RMSE is presented at https://en.wikipedia.org/wiki/Root-mean-square_deviation. 
Assume that there are n records in the test subsets, formally the RMSE of this test subsets is defined as follows:
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test subsets. As all the clean and cure dataset contains quality weights, we must update RMSE for both evaluation 
and test subset to use the weighted records during our training process. Thus we updated the evaluation metric 
with weighted records, the definition of our weighted RMSE is described as below. Assume that there are n 
records in the test subsets, formally the weighted RMSE of this test subsets is defined as follows:
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weights of each records. n is the number of records in the test subsets. In the original dataset, there are no quality 
weights, we treat each record with unit weights by default to calculate its weighted RMSE. As you can see, the 
weighted RMSE will be same as RMSE when using unit weights for original dataset. Thus the weighted RMSE is 
a comparable metric across the original, clean and cure datasets, and in this paper we use RMSE for simple to 
denote “weighted RMSE” for curated datasets. The original Chemprop is used on “Org” dataset, and the weighted 
Chemprop is applied on both “Cln” and “Cure” datasets.

According to Table 3, the six thermodynamic datasets can be split into two groups. The first group includes 
AQUA, PHYS, ESOL and OCHEM, and the second group includes AQSOL and CHEMBL. The datasets in the 

Split Type Dataset

RMSE & Confidence Intervals

Org Cln Cure

Random

AQUA 0.573 ± 0.037 0.583 ± 0.057 0.536 ± 0.042

PHYSP 0.550 ± 0.026 0.600 ± 0.032 0.515 ± 0.018

ESOL 0.596 ± 0.075 0.619 ± 0.044 0.512 ± 0.047

OCHEM 0.548 ± 0.024 0.639 ± 0.044 0.522 ± 0.017

AQSOL 1.023 ± 0.035 0.820 ± 0.036 0.518 ± 0.022

CHEMBL 0.917 ± 0.017 0.811 ± 0.016 0.499 ± 0.011

KINECT 0.401 ± 0.003 0.431 ± 0.003 0.432 ± 0.003

Scaffold

AQUA 0.850 ± 0.086 0.849 ± 0.075 0.697 ± 0.043

PHYS 0.833 ± 0.058 0.813 ± 0.115 0.691 ± 0.092

ESOL 0.854 ± 0.097 0.808 ± 0.090 0.711 ± 0.073

OCHEM 0.847 ± 0.067 0.808 ± 0.075 0.695 ± 0.061

AQSOL 1.073 ± 0.062 0.968 ± 0.045 0.596 ± 0.033

CHEMBL 1.040 ± 0.038 0.900 ± 0.049 0.555 ± 0.031

KINECT 0.433 ± 0.015 0.461 ± 0.008 0.460 ± 0.008

Table 3.  The collected RMSE and confidence intervals of Chemprop or weighted Chemprop trained on the 7 
datasets. The data partition strategies include both random and scaffold strategies. Five models are ensembled 
to improve the model accuracy. We average the RMSE by running each model 8 times and then calculate 
the corresponding confidence interval. The original Chemprop is used on “Org” dataset, and the weighted 
Chemprop is applied on both “Cln” and “Cure” datasets.
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first group have smaller populations and relatively lower RMSE values; we denote the datasets in this group as 
high-quality datasets. The second group has massive records and higher RMSE values in both the original and 
cleaned datasets; thus, the two datasets are regarded as low-quality datasets. Due to the change in the evaluation 
metric with the weighted records in the high-quality datasets and KINECT dataset, the predictive accuracy of 
each clean dataset has a 10% increase in the RMSE using a random partition compared with the original data-
set. At the same time, as we take “group” and “comment” as references to carry out weight assignment for each 
record in the low-quality datasets, weighted Chemprop learns over the quality weights after repetitive record 
normalization and then benefits from a slightly decrease in predictive accuracy (lower is better).

With the above analysis, we can initialize and assign a quality weight for each dataset. The assigned quality 
weight is used for data curation in the following section. The assigned weights are distributed in [0, 1], with a 
value close to 1 indicating high data quality. The assigned weights for these six thermodynamic datasets are 
listed in the fifth column of Table 1. The KINECT dataset is the only kinetic-based dataset; thus, no weighted 
quality is set. The weights in Table 1 are presented as an example to show a relative ranking in terms of the data 
quality among the different datasets, and the specific weight for each dataset can still be adjusted. Searching for 
and evaluating a better weight assignment require extremely large compute power, e.g., one round of evaluation 
generating all the data in Table 3 costs approximately two weeks using 1200 compute nodes (38,200 cores and 
4800 GPU accelerators) in the National Supercomputer Center in Shenzhen. Therefore, we estimate the weights 
in Table 1 from our first intuition and then calculate the corresponding predictive accuracy results in Table 3.

Data clustering.  This work is the first to curate data using inter-dataset redundancy and intra-dataset redun-
dancy. Three curation guidelines are followed to take advantage of these datasets with potential redundancy: ❶ 
A dataset with a higher quality weight can be used to curate a dataset with a lower weight. ❷ The final quality 
weight of a record from a dataset can be calculated by multiplying the weight of the record itself by the assigned 
weight of the dataset. ❸ Records with similar solubility values for a given molecule can be merged by averaging 
their solubility values over their weights.

First, a curation schedule following guideline ❶ is designed, as demonstrated in Fig. 3. Previously, we 
divided the six thermodynamic datasets into two groups: a high- and low-quality group. As illustrated in Fig. 3, 
one can curate a dataset with other datasets in the same group with higher or equal weights, which is denoted 
as inter-group curation. A dataset in the high-quality group can be used to curate a dataset in the low-quality 
group, which we refer to as intra-group curation. No other operations are allowed.

Second, a record clustering and curation workflow is adapted to implement guideline ❷. Given a set of n 
cleaned datasets D[i], each records is initialized with our workflow aims to curate D[n − 1] with datasets D[0], 
…, D[n − 2]. Our curation workflow contains three steps: (1) We merge all input datasets D[i] and reserve all 
the records with the same compound contained by dataset D[n − 1] as a new dataset T. (2) For each molecule 
with multiple solubility values, a partial clustering algorithm, illustrated in Algorithm 1, is adopted to merge 
these records. Then, we update the solubility values and weights with the equation listed by line 5 and line 6 in 
algorithm 1 for each molecule in T. (3) We accumulate the total weights for each molecule and truncate the max-
imum total weights with a given threshold. Then, the weights for each record are normalized in T. By adjusting 
threshold, those molecules occurring in multiple datasets and thus accumulating high total weights larger than 
threshold become highly valued, and those molecules with total weights less than threshold become devalued.

Third, the partial clustering algorithm mentioned above is designed, as presented in Algorithm 1, to cure 
the records following guideline ❸. In each while loop, the two closest solubility values for a given molecule are 
selected and merged if their difference is less than a given parameter d. The two records are merged by averaging 
their solubility values over their weights, and their two weights are summed as the new quality weight. If the dif-
ference between the two closest values is larger than d, the while loop ends and the merged records are updated 
as the new record. For the parameter d, we recommend using 0.5 as suggested in11.

Fig. 3  Data curation schedule for the 6 thermodynamic datasets. The datasets are divided into 2 groups: high 
quality and low quality groups. Two curation operations, i.e., inter-group curation and intra-group curation, are 
illustrated. The feasible curation operations for each dataset are denoted by the lines. For example, AQUA can be 
curated with the AQUA, PHYS, and ESOL datasets, and AQSOL can be curated with all dataset in high quality 
group, and CHEMBL.
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Algorithm 1 Partial Clustering Algorithm.
 

The above workflow is developed and open-sourced in our repository
https://github.com/Mengjintao/Chemprop. The seven curated datasets are collected by applying this work-

flow, and then weighted Chemprop is trained on these datasets. For the best ensembled models, the solubility 
prediction accuracy values measured in terms of the RMSE are summarized in Table 3. Here the lowest RMSE 
value is recorded for KINECT, being as low as 0.432 (with a confidence interval of 0.003). ESOL is a widely used 
benchmark in previous research, and its RMSE score decreases from 0.596 (0.56 reported by Chemprop with 
Bayesian optimization24) to 0.512, i.e., a 0.084 LogS unit decline after data curation. On other datasets with a 
random data partition, the RMSE values of weighted Chemprop benefit from a dramatic decline of 0.037, 0.035, 
0.026, 0.505, and 0.418, respectively, on the curated AQUA, PHYS, OCHEM, AQSOL, and CHEMBL datasets. 
With scaffold data partition, the RMSE values decreasing by 0.153, 0.142, 0.152, 0.477, and 0.485, respectively. 
The model trained on the curated KINECT dataset, however, records an increase in the RMSE value under both 
random and scaffold data partition, as the KINECT dataset is the only set of Kinect solubility data; hence, no 
other dataset can be used to curate this dataset. Moreover, the limited inter-dataset redundancy demonstrated 
in Fig. 2 on the KINECT dataset also restricts our curation benefits. Even with the above limitations, KINECT 
dataset still contributes the lowest RMSE score among all datasets with both Random and scaffold data partition.

In addition to Chemprop, we include another recently developed deep learning method named AttentiveFP 
in our evaluation. AttentiveFP follows a traditional graph learning mechanism and allows non-local effects at 
the intra-molecular level by applying a graph attention mechanism with multiple GRU layers. We also expand 
the code of AttentiveFP to support data quality weights during training and evaluation. The GitHub repository 
of weighted AttentiveFP is https://github.com/Mengjintao/AttentiveFP. An evaluation workflow similar to that 
of Chemprop is used, ensembling multiple AttentiveFP models in several folds. The RMSE values and confidence 
intervals of AttentiveFP on all 7 datasets are collected in Table 4. A similar trend with a decreasing RMSE value 
is illustrated in Table 4. For example, AttentiveFP trained on the curated AQUA, PHYS, ESOL, OCHEM, and 
AQSOL datasets achieves 0.067, 0.095, 0.03, 0.043, and 0.242 unit log decreases in the RMSE compared with the 
original dataset using a scaffold data partition.

All the evaluations demonstrated above in Tables 3, 4 employ hyperparameter optimization with a grid 
search approach. The grid search approach randomly selects 108 parameter combinations on five key parame-
ters, and the lowest RMSE value is recorded. A larger search space may decrease the RMSE value further but will 
not change the trend demonstrated in Tables 3, 4; thus, we keep the same number of parameter combinations 
in our search space during the entire work and do not enlarge the search space to reduce the training time and 
computing resources.

Results
The disparate statistical measurement and high quality datasets are the main obstacles to making an objective 
comparison between deep learning and QM-QSPR approaches, in terms of solubility prediction. To conduct 
a comparison, a dataset of 48 molecules is gathered from several previous works2,41,42. This dataset includes 
four pharmaceutical series of 48 molecules, and none are contained in the 7 collected datasets. pearson and 
spearman’s rank-order correlation coefficients are used to evaluate the performances of the deep learning and 
QM-QSPR approaches.

The correlation coefficients of the predicted and observed values are the main concern for lead optimiza-
tion in compound design. The thermodynamic cycle solubility approach is a fundamental theory used in the 
QM-QSPR approaches. In this approach, the log scale of the aqueous solubility value is linearly related to the 
sublimation and hydration free energies. QM-QSPR approaches mainly focus on searching for extremely accu-
rate methods to calculate the sublimation and hydration free energies using a physics-based simulation at the 
cost of enormous supercomputing power or quantum computation. Thus, instead of predicting the absolute 
solubility values, the main goal of the QM-QSPR approaches is to evaluate the correlation coefficient of the 
solubility value with its two energy factors and then apply it in lead optimization. Two measurements are recom-
mended by one state-of-the-art work2 to evaluate the correlation coefficient: the square of the pearson correla-
tion coefficient r2 and spearman’s rank-order correlation coefficient RS. The equation for the pearson correlation 
coefficient r is
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Here, x is the vector of the predicted value, y is the vector of the true value, and x  and y  are the average values 
of x and y, respectively. When r2 equal to 1, this indicates a perfect linear correlation between the observed and 
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Where di is the difference between the ranks of the measured and predicted solubilities of molecule i. Here, RS 
equal to 1 indicates a perfect ranking of the predicted solubility values.

We compare the deep learning and QM-QSPR approaches on r2 and RS with the evaluation dataset of 48 mol-
ecules. The ensembled models resulting in the best RMSE value in Tables 3, 4 are used to predict the evaluation 
dataset with weighted Chemprop (Chemprop expanded to support data quality). In this evaluation dataset, 12 
molecules of Benzoylphenylurea (BPU) derivatives and 19 molecules of Benzodiazepin (BDZ) derivatives com-
prise the first 31 molecules2. Seven molecules with selective Cyclin-Dependent Kinase 12 (CDK) inhibitors42 and 
10 molecules of Pyrazole and Cyanopyrrole Analogs (PCAs) comprise the last 17 molecules41. We collect the sta-
tistical results of r2 and RS on these 48 molecules for weighted Chemprop and plot them in Figs. 4, 5, respectively. 
Note that the r2 values of the QM-QSPR approach proposed by2 are 0.79, 0.83, and 0.905 on the BPU, BDZ, and 
BPU&BDZ datasets, respectively. They also report the Rs score on the BPU, BDZ, and BPU&BDZ datasets to be 
0.87, 0.90 and 0.967 respectively. Currently, no statistical results have been given on PCAs and CDK inhibitors 
by any of the QM-QSPR approaches.

In Fig. 4, the r2 curves of weighted Chemprop on BPU, BDZ, and BPU&BDZ increase steadily to 0.90, 0.62, 
and 0.93, respectively. The curve of CDK for weighted Chemprop increases to 0.48 on the CHEMBL dataset. 
For PCAs, the curves for both Chemprop and weighted Chemprop show no clear correlations due to small data 
size. The jitter curves of Chemprop in most cases with lower r2 values reveal that low-quality data in the training 

Split Type Dataset

RMSE & Confidence Intervals

Org Cln Cure

Random

AQUA 0.616 ± 0.027 0.639 ± 0.014 0.579 ± 0.020

PHYS 0.649 ± 0.019 0.643 ± 0.013 0.551 ± 0.024

ESOL 0.642 ± 0.017 0.641 ± 0.025 0.594 ± 0.022

OCHEM 0.6018 ± 0.012 0.651 ± 0.020 0.6016 ± 0.010

AQSOL 0.826 ± 0.027 0.760 ± 0.012 0.593 ± 0.004

Scaffold

AQUA 0.743 ± 0.038 0.747 ± 0.031 0.676 ± 0.038

PHYS 0.782 ± 0.037 0.789 ± 0.037 0.687 ± 0.038

ESOL 0.761 ± 0.048 0.801 ± 0.043 0.731 ± 0.073

OCHEM 0.746 ± 0.011 0.779 ± 0.019 0.703 ± 0.016

AQSOL 0.872 ± 0.017 0.842 ± 0.019 0.630 ± 0.008

Table 4.  The collected RMSE and confidence intervals of AttentiveFPwhen trained on the 7 datasets29. The 
data partition strategies include both random and scaffold partitioning, and the partition ratio is [0.8, 0.1, 0.1] 
for training, testing, and evaluation. In this experiment, 5 models are ensembled 8 times to average the RMSE 
values and calculate the corresponding confidence interval. Because AttentiveFPis time consuming on a very 
large dataset, the CHEMBL and KINECT datasets are not recorded, as their training times are longer than 150 
hours. The original AttentiveFP is used on “Org” dataset, and The weighted AttentiveFP is applied on both “Cln” 
and “Cure” datasets.

Fig. 4  Comparison of r2 values for ensembled models with the best RMSE scores in Table 3 for Chemprop (left 
figure) or weighted Chemprop (right figure) when predicting 48 molecules.
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datasets affect the model performance. Specifically, data curation poses a negative effect on r2 for some special 
datasets, for example, the CHEMBL dataset. This outcome may indicate that the actual data quality of this data-
set should be higher than the value we set, and thus, the data may be polluted by other datasets, resulting in poor 
performance. When comparing Chemprop with original dataset and weighted Chemprop with curated dataset, 
the results in the left side of Fig. 4 shows no clear trends or gradation on both increasing training dataset size in 
x axis or increasing prediction dataset size on BPZ, BDZ, and BPZ&BDZ dataset in y axis. In the right side of 
Fig. 4 however we can confirm two trends from both x and y axis in our evaluation. Firstly on the x direction, the 
r2 value increases steadily when the data size of the training dataset increasing from AQUA with one thousand 
compounds to KINECT of hundred of thousands. Secondly on the y direction, the r2 value of BPZ&BDZ dataset 
with 31 compounds is larger than BPZ and BDZ in most cases on 7 datasets. What’s more, the r2 value of BPZ 
with 19 compounds is larger than that of BDZ with 12 compounds. Thus there is a clear gradation on increasing 
prediction dataset size on our curated dataset.

In Fig. 5, the Rs curves of BPU, BDZ, and BPU&BDZ converge to 0.59, 0.89, and 0.947, respectively, with 
increasing data size when using weighted Chemprop. The Rs value of PCAs and CDK increase to 0.58 and 0.63 
on the CHEMBL dataset and decrease to 0.4 and −0.18 on the Kinect dataset, respectively. One can see that the 
Kinect dataset yields a negative performance on Rs when predicting the PCA and CDK values for both weighted 
Chemprop and Chemprop. The unstable r2 and Rs values around 0 for CDK confirm that the graph learning model 
of Chemprop fails to track the physicochemical features of PCAs in terms of solubility. From both Figs. 4, 5,  
weighted Chemprop demonstrates a clear prediction performance gradation on the BPU, BDZ, CDK and PCA 
molecules, whereas Chemprop with the original dataset does not.

The above comparison confirms that r2 and Rs values for CDK and PCA are noisy, these two datasets with 7 
and 10 elements respectively, are too small to deliver a good comparison. However when given enough number 
of compounds, both the r2 and Rs value of BPU & BDZ datasets are high and above 0.9. As both r2 and Rs are used 
to evaluate the correlation coefficients of the predicted and observed values, it is not the absolute value of solubil-
ity value. We guess that intrinsic solubility and kinetic solubility can have different absolute solubility value but 
can still share the same tread in its correlation coefficients. Thus we didn’t distinguish between thermodynamic 
solubility and kinetic solubility in our training datasets (AQUA, PHYS, ESOL, OCHEM, AQSOL, CHEMBL, 
KINECT) and the test dataset (BPU, BDZ, CDK, and PCA). Note that, it is still recommended to avoid mixing 
kinetic and thermodynamic in one training dataset or test dataset. Larger dataset will be better for us to do this 
evaluation, but currently no other open data is available.

In terms of running time, predicting these 48 molecules, for example, with weighted Chemprop requires 
approximately 1.34 seconds in total or 0.028 seconds for each molecules on average with a single desktop com-
puter as listed in Table 5. For QM-QSPR approaches such as the QM-based methods2, the calculation relies on 
a cloud infrastructure of millions of CPU cores; however, no running time can be recorded as their method is 
commercial and not publicly available. Thus, the availability of open-source methods and dramatically lower 
usage of computing resources are additional advantages of applying deep learning models.

Fig. 5  Comparison of Rs values on ensembled models with the best RMSE scores in Table 3 for Chemprop (left 
figure) or weighted Chemprop (right figure) when predicting 48 molecules.

Desktop Time Usage (in seconds)

CPU GPU Evaluation (48) ESOL (1128) AQSOL (9982)

E3-1225 v6 — 1.28 8.11 86.56

E3-1225 v6 Quadro P400 1.34 8.49 86.07

Platinum 8180 — 0.70 9.98 107.93

Platinum 8180 GTX 1050Ti 0.61 8.27 86.28

Platinum 8180 Tesla T4 0.62 8.42 91.20

Table 5.  Statistical time-usage (averaged over 100 rounds) of predicting compounds in evaluation, ESOL, and 
AQSOL datasets with weighted Chemprop on three computers. The number of molecules containing in these 
datasets are 48, 1311, 9982 respectively. The time-usage is measured in seconds. The efficiency of the prediction 
workload is about 4% on Tesla T4, 6% on GTX 1050Ti, and 9% on Quadro P400, thus the running time has 
limited relation with GPU cards for unsaturated workload.
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To conclude, with seven collected large-scale aqueous solubility dataset and the proposed data curation 
methodology, seven high quality curated datasets with quality weights are generated. Deep learning methods 
including both Chemprop and AttentiveFP shares a dramatically increase on predictive accuracy measured in 
RMSE, which has been demonstrated in method section in details. More importantly, using these ensembled 
models with best RMSE, deep learning methods benefit from curated datasets, with a steady improvement in r2 
and Rs when increasing training data volume. Deep learning methods also demonstrate a superior performance 
on r2 and comparable performance on Rs when predicting BPU and BDZ derivatives for leading compound 
optimization compared with the QM-QSPR approaches, such as2. A clear prediction performance rank demon-
strating the capacity of deep learning methods on four series compounds is also illustrated by curated datasets. 
For example, deep learning methods do not function well on PCA and CDK derivatives, while the QM-QSPR 
approaches have not demonstrated their capacity. A clear advantage of deep learning approach is its running 
time, when predicting thousands of target compounds it takes only seconds on a common desktop computer 
whereas physics-based approach requires a large compute resources and takes a longrunning time.

Discussion
Previously, both AI and drug design experts are focused on molecular property prediction. However they are 
interested in totally different issues, as we illustrated in Table 6. Enormous high quality data and high predictive 
accuracy on their own measurement standard are the main concern for the AI experts. Drug design experts 
are more interested in real world effects of the method itself. For example, how is the correlation coefficients 
in compound lead optimization, what’s the generalization ability on different series of in-house compounds, 
what’s the required computing resource and its running time on making prediction, and finally is it available or 
open-sourced for free application. This work is trying to bridge such gap with one of its sub-problem, aqueous 
solubility prediction.

Currently, the QM-QSPR approaches are the dominant techniques for aqueous solubility prediction in drug 
design. Several research works have demonstrated their improvement with AI techniques. However, with these 
continuous improvements in predictive accuracy achieved with AI, conservative drug design experts remain 
concerned about the real ability of deep learning in comparison with that of QM-QSPR approaches on their 
in-house datasets. This work contributes to resolve the concerned issues from both deep learning and drug 
design side. From the deep learning side, we increased the data volume of aqueous solubility datasets from 
thousand to hundreds of thousands of molecules, refined the data quality of the datasets with a data curation 
method, and finally improved the solubility predictive accuracy dramatically under the traditional measurement 
of RMSE. In terms of drug design side, this work is a milestone bridge that constructs a mechanism to com-
pare QM-QSPR and deep learning approaches with state-of-the-art solubility evaluation datasets on correlation 
coefficients. Fortunately, the graph learning method of expanded Chemprop trained on a curated dataset has 
demonstrated a steady performance on correlation coefficients of r2 and Rs comparable to that of the QM-QSPR 
approaches, while using orders of magnitudes less compute resources and being available for public evaluation. 
The comparison also confirms that the generalization ability of deep learning approach is good on BPU andBDZ 
derivatives but still limited on PCA and CDK derivatives which demands further research effort on both sides.

This work also reveals a turning point in molecular property prediction where the deep learning and 
QM-QSPR approaches should be jointly co-developed. For example, topology-based graph learning and crystal-
3D-structure-based deep learning may integrate both topology and crystal 3D features in solubility prediction 
with a promising accuracy improvement. One can also expand this work to other molecular properties to better 
understand natural phenomena with the help of both QM-QSPR and deep learning methods.

Usage Notes
Reproducibility of the curation algorithm, training workflow and performance evaluation can be verifed by execut-
ing the scripts described in the README of our project SolCuration at https://github.com/Mengjintao/SolCuration. 
The code has been developed and tested using Python 3.7 on Linux operating system and is available under the BSD 
3-Clause License. All the datasets are also provided in this repository for further research effort on this problem.

Data availability
The original, clean and curated dataset for the 7 selected data sources presented in this paper are publicly available 
on GitHub at https://github.com/Mengjintao/SolCuration and can be cited by43.

Code availability
Python and C++ codes used to perform data curation, training workflow, and performance evaluation shown in 
this manuscript are publicly available on GitHub at https://github.com/Mengjintao/SolCuration or one can cite 
our code by43.

AI experts Drug design experts

Data volume Correlation coefficients in compound lead optimization

Data quality Generalization ability on different series of compounds

Measurement standard Computing resource and its running time

Predictive accuracy Open source availability

Table 6.  Difference of the issues concerned by AI experts and Drug design experts.
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