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Abstract—In this paper, we analyze and optimize the most
time-consuming steps of the SWAP-Assembler, a parallel genome
assembler, so that it can scale to a large number of cores for huge
genomes with the size of sequencing data ranging from terabyes
to petabytes. According to the performance analysis results,
the most time-consuming steps are input parallelization, k-mer
graph construction, and graph simplification (edge merging). For
the input parallelization, the input data is divided into virtual
fragments with nearly equal size, and the start position and end
position of each fragment are automatically separated at the
beginning of the reads. In k-mer graph construction, in order to
improve the communication efficiency, the message size is kept
constant between any two processes by proportionally increasing
the number of nucleotides to the number of processes in the input
parallelization step for each round. The memory usage is also
decreased because only a small part of the input data is processed
in each round. With graph simplification, the communication
protocol reduces the number of communication loops from four
to two loops and decreases the idle communication time.

The optimized assembler is denoted as SWAP-Assembler 2
(SWAP2). In our experiments using a 1000 Genomes project
dataset of 4 terabytes (the largest dataset ever used for as-
sembling) on the supercomputer Mira, the results show that
SWAP2 scales to 131,072 cores with an efficiency of 40%. We
also compared our work with both the HipMER assembler
and the SWAP-Assembler. On the Yanhuang dataset of 300
gigabytes, SWAP2 shows a 3X speedup and 4X better scalability
compared with the HipMer assembler and is 45 times faster
than the SWAP-Assembler. The SWAP2 software is available at
https://sourceforge.net/projects/swapassembler.

I. INTRODUCTION

Scientists increasingly want to assemble and analyze very
large genomes [1], metagenomes [2], [3], and large numbers
of individual genomes for personalized healthcare [4], [5], [6],
[7]. In order to meet the demand for processing these huge
datasets [8], parallel genome assembly seems promising, but
in fact the genome assembly problem is very hard to scale for
the following reasons [9], [10].

First, state-of-art parallel assembly solutions are dominantly
utilizing the de Bruijn graph (DBG) strategy [11]. This strategy
is a variant of traveling salesman problem or equivalent to the
Euler path problem, which is a well-known NP-hard problem
[12]. Second, the number of nodes in the graph representing
the genome data is enormous. One base pair in the sequencing

data can generate a k-mer (node) in the de Bruijn graph. For
example, a 1000 Genomes dataset [13], [14] with 200 terabytes
data can generate about 247 k-mers (or nodes), which is 128
times larger than the problem size of the top rank result in the
Graph 500 list (as of March, 2016) [15]. Third, sequencing
machines are not accurate. About 50% to 80% of k-mers are
erroneous [16], [17], thus the nodes and edges in the graph
may not be considered trustable depending on what error the
user is willing to tolerate. What is more, k-mers located in the
low coverage gaps are hard to be distinguished from erroneous
k-mers, which makes it hard to recover DNA in the gap. Lastly,
species related features, such as repeats, GC distribution, and
polyploid make the genome assembly itself more complex and
even harder for parallelization.

Previously we developed the SWAP-Assembler [10], which
can assemble the Yanhuang genome [18] in 26 minutes using
2,048 cores on TianHe 1A [19]. The work in this paper further
improves the SWAP-Assembler by analyzing and optimizing
its most time-consuming steps—input parallelization, k-mer
graph construction, and graph simplification (edge merging)—
with the aim of developing a much faster assembly tool that
can scale to hundreds of thousands of cores and challenging
the largest genome assembly with a dataset of 4 terabytes.
Before our work, the record of largest assembly to date was
kept by Kiki [20], which has assembled nearly 2.3 terabytes.

We optimize these three steps to keep the percentage of time
usage in each step constant as the number of cores increases. In
the input parallelization step, a fragment adjustment algorithm
(FAA) and an adjustable I/O data block size are used to
explore the largest I/O efficiency and at the same time keep a
balance between the memory usage and I/O efficiency. In k-
mer graph construction, two methods are used to prevent com-
munication efficiency from degrading with increasing numbers
of cores. One method keeps the message size independent of
the varying number of cores in order to prevent communication
with tiny messages. The other method is a data pool designed
to separate the I/O process in the input parallelization and
communication process in the k-mer graph construction step.
With graph simplification, the communication protocol of the
lock-compute-unlock mechanism in the SWAP-Assembler is



optimized by minimizing the number of communication loops
from four loops to two loops, which helps to keep the idle
time constant with increasing numbers of cores.

The optimized assembler is called SWAP-Assembler 2
(SWAP2) in this work. In our experiments, a 1000 Genomes
dataset of 4 terabytes [13], [14] is used—the largest dataset
ever used for assembly. The results on the supercomputer
Mira show that SWAP2 scales to 131,072 cores (the highest
scalability ever reached) with an efficiency of 40%. The total
execution time is about 4 minutes (including 2.5 minutes I/O
time). With the Yanhuang dataset of 300 gigabytes, SWAP2
shows a 3X speedup and 4X better scalability compared with
HipMer and is 45 times faster than the SWAP-Assembler.

The rest of the paper is organized as follows. Section II
briefly introduces the problem of genome assembly. Section III
discusses previous works on parallel genome assembly. Sec-
tion IV presents the optimization methods for each time con-
suming step. The performance evaluation results for SWAP2
are given in Section V. We summarize the conclusion in
Section VI.

II. BACKGROUND: GENOME ASSEMBLY

Given one biological genome sample with reference se-
quence w ∈ Ng , where N = {A, T,C,G} and g = |w|, a large
number of short sequences called reads, S = {s1, s2, ..., sh},
are sequenced by the sequencing machines. si is a substring
of w with some editorial errors introduced by sequencing
machines, here 1 ≤ i ≤ h. Genome assembly problem is
to recover the reference sequence w with S.

In genome assembly, graphs are utilized for representing the
genomic data. A directed graph G = (V,E) consists of a set
of vertices (k-mers) V and a set of arcs (directed relationships)
E = (V ×V ). The k-mers are generated by cutting the reads S
with a sliding window of length k. The arcs are used to connect
any two k-mers cut by two continuous sliding windows on
some read si ∈ S.

Genome assembly with the de Bruijn graph (DBG) strategy
is the process of reconstructing the reference genome sequence
from these reads using the above graph consisted with k-mers
(Figure 1). However this strategy is a variant of traveling
salesman problem or equivalent to the Euler path problem,
which is an NP-hard problem [12]. Finding the original
reference sequence from all possible Euler paths cannot be
solved in polynomial time. What is more, gaps and branches
caused by uneven coverage as well as erroneous reads and
repeats prevent from obtaining a full length genome. In real
cases, a set of shorter genome sequences called contigs are
generated by merging unanimous paths instead. Thus, our
work focuses on finding a scalable solution for the following
genome assembly problem.

Problem of Genome Assembly

Input: A set of reads without errors S = {s1, s2, ..., sh}
Output: A set of contigs C = {c1, c2, ..., ct}
Requirement: Each contig corresponds to an unanimous path

Fig. 1: The work flow of genome assembly using de Bruijn
graph (DBG) strategy.

in the de Bruijn graph constructed from the set of reads S

III. RELATED WORK

Several state-of-art parallel assemblers have been proposed
[9], [10], [21], [22], [23], [24], [25], [26], [27]. Most of
them follow the de Bruijn graph (DBG) strategy proposed by
Pevzner et al. in 2001 [11].

In ABySS [9], the parallelization is achieved by distributing
k-mers to multiservers in order to build a distributed de Bruijn
graph. Error removal and graph reduction are implemented
over MPI communication primitives.

Ray [2], [28] is a general distributed engine proposed by
Boisvert for traditional de Bruijn graphs, that extends k-mers
(or seeds) into contigs with a heuristically greedy strategy by
measuring the overlapping level of reads in both directions.
Performance results on the Hg14 dataset, however indicate
that Ray is 12 times slower than the SWAP-Assembler on 512
cores [10].

PASHA [21] focuses on parallelizing k-mer generation and
distribution and DBG simplification in order to improve its
efficiency with multithreads technology. However, PASHA
allows only a single process for each unanimous path, thus
limiting its degree of parallelism. Performance results [22]
show that PASHA can scale to 16 cores on a machine with
32 cores on three different datasets.

YAGA [23], [24], [25] constructs a distributed de Bruijn
graph by maintaining edge tuples in a community of servers.
Reducible edges belonging to one unanimous path are grouped
into one server with a list ranking algorithm [29]. These
unanimous paths are reduced locally on separate servers. The
recursive list ranking algorithm used in YAGA has a memory
usage of O(n× log(np)), however, that induces large memory
usage and causes low efficiency. Here n is the input data size,
and p is the number of processes.



HipMer [26], [27] is an end-to-end parallel de novo genome
assembler developed in the UPC language [30]. With a graph
partition method provided by Oracle, HipMer achieves a
scalability of 15,360 cores on both human genome sequencing
data (290 Gbp) and wheat genome sequencing data (477 Gbp).

On the other hand, the SWAP-Assembler [10] that we
previously developed presents a multi-step bi-directed graph
(MSG), a variant of de Bruijn graph, to resolve the compu-
tational interdependence on merging edges that belong to the
same path. A scalable computational framework SWAP [17],
[10] was developed to perform the computation of all edge
merging operations in parallel. Experimental results show that
the SWAP-Assembler can scale up to 2,048 cores on Yanhuang
dataset (300 Gbp). The SWAP-Assembler is demonstrated as a
solution with the lowest communication complexity. It is also
the first assembler using more than 1,000 CPU cores.

IV. OPTIMIZATIONS

We first evaluate the SWAP-Assembler to identify its perfor-
mances bottlenecks. We examine every time-consuming step,
find the bottlenecks, and discuss the reasons for these per-
formance degradations. Optimization methods and strategies
are then presented to resolve these problems. Experiments
are presented later in order to confirm the efficiency of these
strategies.

Based on multi-step bi-directed graph (MSG) and the
SWAP computational framework [10], the major time usage
of the SWAP-Assembler can be divided into five steps: input
parallelization, k-mer graph construction, k-mer filtering, MSG
graph construction, and graph simplification (edge merging).
Figure 2 shows the time (in seconds) consumed by each step
of the SWAP-Assembler when assembling a test genomic
dataset from the 1000 Genomes project [13], [14]. This project
has more than 200 terabytes of sequencing data from 1,000
people from all over the world. The results show that the
most time-consuming steps are input parallelization, k-mer
graph construction, and graph simplification. In particular, the
most time-consuming step—input parallelization—uses more
than half the total time. The time usage of the k-mer graph
construction step increases steadily with an increasing number
of cores, thus seriously impacting the scalability of SWAP.
The time usage of the graph simplification step decreases
slightly with the number of cores. To further improve both
the efficiency and scalability of the SWAP-Assembler, we
optimize the three steps by keeping the percentage of time
usage in each step constant with an increasing number of cores
and input data size (or weak-scaling test).

A. Input Parallelization

Loading the terabytes to petabytes of genomic data into
memory with multiple processes faces significant challenges
[9], [22]. The SWAP-Assembler [10] adapted a strategy similar
to that of Ray [21] and YAGA [23], [24], [25]. Given input
reads with n nucleotides from a genome of size g, we divide
the input file equally into p virtual data blocks, where p is the
number of processes. Each process reads the data located in

Fig. 2: Time usage for a weak-scaling test of the SWAP-
Assembler on processing the data from the 1000 Genomes
project. Here each computing node has been allocated 4
processes, and each process has been allocated 256 megabytes
of input data. The supercomputer Mira at Argonne National
Laboratory was used in this test.

its virtual data block only once. The computational complexity
of this step is bounded by O(n/p). However, two restrictions
affect the performance of this step. One is that there is no
format-sensitive partition strategy for the biology data; the
other is that no adjustable parameters are available to boost
the I/O performance close to the system limit.

Previous data partition methods can possibly divide the data
fragment in the middle of any DNA reads in FASTA or FASTQ
format in the SWAP-Assembler [9], [21], [23]. In order to
resolve this problem, a location function is used to check
the start symbol one by one after reading each byte from the
beginning point of each fragment [10]. However this method
has an additional I/O overhead on reading the data.

To overcome this drawback, we propose a fragment adjust-
ment algorithm (FAA) in Algorithm 1 to replace the current
location function. Every process reads one data block and
adjusts the start and end position of its own data fragment
in the beginning. Each process with rank procID updates the
starting point of its fragment to the position of the beginning
points of any reads and sends this value to the process
procID− 1. Then process procID− 1 updates the end point
of its fragment to this value. After this operation, each DNA
read is automatically allocated to only one process in FASTA
or FASTQ format without spanning multiple fragments. The
FAA algorithm keeps its I/O overhead and the communication
overhead constant. Moreover, the size of the data block used
in our algorithm is an additional parameter for tuning the I/O
performance; specifically, by adjusting the data block size, the
I/O efficiency can be maximized to approach the system limit.

To evaluate the I/O performance improvement with the FAA
algorithm and data block size tuning, we created a weak-
scaling dataset from the 1000 Genomes project [13], [14]. The
input data increases proportionally from 256 GB to 4,096 GB
as the number of cores increases from 1024 to 16,384 cores;
the problem size for each process is kept constant at 256 MB.



Algorithm 1: Fragment Adjustment Algorithm.
Input: Dataset S in FASTA or FASTQ format, the rank of local

process procID and the total number of processes p.
Output: Virtual fragments S1, S2, . . . , Sp.
begin

size = the file size of dataset S;
step = size/p;
start = procID ∗ step;
end = (procID + 1) ∗ step;
end = end < size ? end : size;
readBuf = Read one data block∗ starting from start;
i = 0;
while readBuf [i] 6= ‘>’ do

i++;

sendAdjustDelta = i;
if procID 6= 0 then

Send sendAdjustDelta to process procID − 1;

if procID 6= p− 1 then
receive recvAdjustDelta from process procID + 1;

start += sendAdjustDelta;
end += recvAdjustDelta;
SprocID = (start, end);

* Here the data block size will be larger than the length of
reads to ensure that every data block contains at least one start
symbol of the read ‘>’.

The time usage results are shown in Figure 3. As one can see,
compared with the SWAP-Assembler, FAA generally saves
more than 60% of the time usage on the input parallelization.
By increasing the data block size from 4 MB to 64 MB, the
time usage is further decreased with increasing data block
size. The results also confirm that the larger block size can
benefit the performance with less I/O operations and better
streaming effect, but larger block size also causes several times
larger memory usage in the postprocessing steps. Therefore, to
balance between memory usage and efficiency, the block size
will be fixed to be 64 MB in the following test. With 16,384
cores, SWAP2 achieves 16X speedup with the optimization of
the input parallelization.

The I/O efficiency of the input parallelization is presented in
Figure 4. Each I/O drawer in Mira has an I/O bandwidth of 32
GB/s [31], [32], [33], [34]; the I/O efficiency of one rack can
be estimated by dividing the real I/O bandwidth with 32 GB/s.
Figure 4 shows that with 16,384 cores, the I/O efficiency of
SWAP2 achieves about 16.5% of the system efficiency.

B. K-Mer Graph Construction

The second step in the SWAP-Assembler aims to construct
a graph with its vertices that are k-mers or k-molecules (con-
taining two complementary k-mers) [10]. This step has three
phases: k-molecule generation, k-molecule distribution, and k-
molecule storage. In the first phase, input sequences are broken
into overlapping k-molecules by sliding a window of length
k along the input sequence. In the k-molecule distribution
phase, each nucleotide can generate one k-molecule. Because
the input involves terabytes of data, the number of generated k-
molecules is huge for distribution and communication. In the

Fig. 3: Time usage statistics of input parallelization using FAA
with varying data block sizes and numbers of cores.

Fig. 4: I/O efficiency of FAA with varying data block sizes
and numbers of cores. The blue bar is the I/O efficiency of
the SWAP-Assembler.

last phase, each process allocates a container to store these
k-molecules according to a given hash function.

Figure 5 shows the time usage of these three phases in pro-
cessing the data generated by the 1000 Genomes project with
the SWAP-Assembler. The results show that the bottleneck
is the k-molecule distribution; the percentage of time usage
used in distribution increases from 53% to 97% when the
number of cores increases from 1,024 to 16,384. The dominant
workload in the distribution phase is communication, during
which each process needs to send the k-molecules to the
remote process according to a given hash function and receives
all the k-molecules belonging to it. In the SWAP-Assembler,
the total data volume of messages communicated between all
processes is fixed; but when the number of processes doubles,
the message size between each pair of processes is reduced by
half. Communication with tiny messages thus will induce low
efficiency and directly affect the performance of this step [35],
[36].

To improve the communication efficiency and prevent com-
munication with tiny messages, we include three optimization
strategies in this step.

Data compressing In the k-molecule generation, we have
compressed two arcs sharing the same k-molecule into one,



Fig. 5: Time usage statistics for the three phases of the k-mer
graph construction step.

thus reducing the communication data volume and memory
usage by half.

Initial message size tuning To prevent communication with
tiny messages, we have to keep the message size independent
of the increasing number of cores. In each communication
round, the number of nucleotides (in DNA reads) processed
in every process is fixed to be L. The data thus can generate
at most L k-molecules distributed across p processors. The
number of nucleotides L is designed to increase proportionally
with the number of processers; in this case, the number
of generated k-molecules or message size between any two
processers is a constant of L× Bk/p0, where Bk is the data
structure size of k-molecules and p0 is the number of cores
used for the performance baseline. In our case, p0 = 1024.

With this method the message size between any two pro-
cessers is constant at run-time. However, the initial message
size can be adjusted with the number of nucleotides L,
enabling higher communication efficiency. Arbitrarily vary-
ing the number of nucleotides and the I/O data block size,
however, can induce interference between these two steps.
For example, if the I/O block size is set to 1 MB and the
number of nucleotides L is set to 1K, when the number
of processes increases beyond 1,024, the total number of k-
molecules needed for communication will be more than 1
million. In this case, the data is not enough, and the message
size will decrease.

I/O and Communication Isolation To fix the cited prob-
lem, we used a data pool, shown in Figure 6, to separate
the I/O process in the input parallelization step and the
communication process in the k-mer graph construction step.
The data pool is a shared-memory space for the two steps.
The communication phase can continuously read data from
this data pool, and the data pool will be large enough to
keep the message size constant. Here the data pool acts as
a blocking queue, the I/O process in the input parallelization
step acts as a producer, and the communication process acts
as a consumer. With this data pool, the communication part
and the I/O part are isolated, and the input data (reads) can be
automatically refilled from disk to the data buffer by calling

Fig. 6: Data pool designed to separate the I/O process in
the input parallelization step and communication in the k-mer
graph construction step.

Fig. 7: Time usage of the communication routines for k-
mer graph construction step on processing the 1000 Genomes
project dataset.

the I/O functions. The communication process automatically
reads these reads from this pool. The advantage is that we can
select the best message size and I/O data block size to achieve
peak performance in both steps.

We designed a weak-scaling experiment to find the best
value for the initial number of nucleotides L processed in one
round. Here we increased L from 512 bytes to 8,192 bytes. To
collect the time usage on data communication, we inserted tags
before and after the MPI communication routines delivering
the data. The results are plotted in Figure 7. As the figure
shows, for a fixed number of nucleotides L the running time
increases with the increasing number of cores. For a run using
more CPU cores (in this case 16,384 cores), the efficiency is
decreased. Increasing the initial number of nucleotides L can
save running time, but this trend is weakened by the increasing
number of cores. The best value, 8,192 bytes, is used as the
initial number of nucleotides L in the following experiments.

The time usage for these three phases before and after
optimization is presented in Figure 8. For the first phase,
compared with original version, the running time on cutting
reads decreases steadily with the increasing number of cores,
and a 5.2X speedup is achieved. The time usage in distribution
is almost fixed when the data size increases with the number



Fig. 8: Time usage statistics for the three phases of the k-mer
graph construction step before and after optimization.

Fig. 9: Communication efficiency of the k-mer graph con-
struction step on processing the 1000 Genomes project dataset.
Here the theoretical peak communication performance of Mira
is 0.9 GB per node per second.

of cores. With 16,384 cores, the speedup is about 64X that of
its previous version. In the last phase, the time usage in these
two subfigures share the same trends.

We also evaluated the communication efficiency of the
optimized SWAP. The peak all-to-all bandwidth of a 5D-torus
network is limited by the length of its longest dimension
[35], [36]. Because the longest dimension Dim in Mira with
4,096 nodes is 16, the peak user data communication per-node
for all-to-all bandwidth is 8/Dim ∗ 1.8 GB/s, which is 0.9
GB/s [35], [36]. The time usage for data communication and
the communication efficiency was calculated and is plotted in
Figure 9. The results show that the communication bandwidth
has improved slightly by increasing the number of nucleotides
L processed in each round. With the increasing number of
cores from 1,024 (1/4 rack) to 16,384 (4 rack), however,
the communication efficiency decreases from 50% to 15%,
which follows the general trend of decreasing efficiency with
increasing number of cores.

C. Graph Simplification

In the graph simplification step, the SWAP computational
framework with two user-defined functions is used to merge
edges into contigs. Algorithm 2 describes the lock-computing-
unlock schedule in the SWAP computational framework [10].

Algorithm 2: Communication protocol for lock-
computing-unlock schedule in SWAP. Here the protocol
is divided into two routines for the SWAP thread and
service thread [10].

begin
Routine in SWAP thread;
Lock Stage:
Post MPI Isend(compReq);
Post MPI Irecv(compReq + 1);
Reply Call RecvProc(2, compReq);
Notify Stage:
Post MPI Isend(compReq);
Post MPI Isend(compReq + 1);
Call RecvProc(2, compReq);

Routine in service thread;
while true do

Post MPI Testall(2, compReq, &flag);
if flag then

break;

Post MPI Test(&globalReq, &flag);
if flag == 0 then

continue;

Doing computation work here . . . ;
Post MPI Irecv(&globalReq);

In Algorithm 2, the communication protocol is divided into
two routines for the SWAP thread and service thread. In the
SWAP thread, a vertex needs to send a lock message to its
neighbors. This vertex can move to the notify stage only after
it collects all lock replies. In the notify stage, this vertex sends
computing commands and associated data to its neighbors if
all these lock replies have success tags; otherwise, the protocol
will send unlock messages to release the lock for all its
neighbors automatically. In the service thread, a while loop
is used to detect the completion of the communication and
revoke the computing work or restart the routine in SWAP
thread.

Figure 10 illustrates how the communication protocol in
Algorithm 2 works. Node 0 sends a lock message to node 1
and waits for its reply. After that, another lock message is
sent to node 2 for its reply. Here two communication loops
are used for node 0 to communicate with node 1 and node 2.
After receiving the two reply messages with lock success tags,
node 0 sends the notify message together with the related data
to node 1 and node 2 in two communication loops. Overall,
Algorithm 2 needs four loops to complete the schedule in
SWAP. The overall time usage of Algorithm 2 is affected by
two factors: the waiting time of a round-trip reply message
in one loop and the number of communication loops. In
Algorithm 2, the service routine is active only after receiving
the reply message. For large supercomputers such as Mira
[33], [34], more cores indicate longer latency, as confirmed by
the left graph of Figure 11, where the waiting time increases
steadily with the increasing number of cores.

To minimize the number of communication loops and



Fig. 10: Two neighbors sharing the same loop in both the lock
and notify stages.

providing possibilities for sharing the idle time in Algorithm 2,
we introduced an optimized communication protocol in Algo-
rithm 3. In this algorithm, node 0 can send the lock messages
to node 1 and node 2 and receive the replies at the same time.
After collecting all the replies, node 0 can send the notify
message and data to node 1 and node 2 at the same time.
Only two loops therefore are needed for the communication
protocol of SWAP.

Algorithm 3: Optimized communication protocol for lock-
computing-unlock schedule. Here the calls to the compute
routine on two vertices have been integrated into one
routine.

begin
Routine in SWAP thread;
Lock Stage:
Post MPI Isend(compReq) ;
Post MPI Irecv(compReq+1) ;
Post MPI Isend(compReq+2) ;
Post MPI Irecv(compReq+3) ;
Call RecvProc(4,compReq) ;
Notify Stage:
Post MPI Isend(compReq);
Post MPI Irecv(compReq+1);
Post MPI Isend(compReq+2);
Post MPI Irecv(compReq+3);
Call RecvProc(4, compReq);

Routine in service thread;
while true do

Post MPI Testall(2, compReq, &flag);
if flag then

break;

Post MPI Test(&globalReq, &flag);
if flag == 0 then

continue;

Doing computation work here . . . ;
Post MPI Irecv(&globalReq);

We conducted an experiment to test the improvement of the
optimized protocol for SWAP. A weak-scaling data from the

Fig. 11: Graphs showing constant idle time after the commu-
nication optimization.

TABLE I: Time usage (seconds) of SWAP2 on weak-scaling
test with the data from the 1000 Genomes project.

Data Size 256 GB 512 GB 1 TB 2 TB 4 TB
No. Cores 1024 2048 4096 8192 16384
Input Parallelization 138.27 145.2 154.81 183.35 208.41
K-mer Graph Const 139.62 136.67 129.68 119.39 177.87
K-mer Filtering 20.88 14.46 15.78 12.6 13.41
MSG Graph Const 174.37 98.3 54.23 30.28 15.73
Graph Simplification 1443.87 843.64 438.9 231.33 123.88
Total Time Usage 1948.77 1256.13 803.57 582.59 543.58

1000 Genomes project is used in this experiment. The input
data increases proportionally from 512 GB to 4,096 GB with
the increasing number of cores in order to keep the problem
size for each process constant. The time usage results are
shown in Figure 11. The left panel in the figure shows that the
idle time in the communication protocol of SWAP increases
with the increasing number of cores and reaches 85% of the
total time at 32,768 cores. The right panel shows that with the
optimization on the communication protocol, the idle time is
kept constant at about 40% in all cases.

V. PERFORMANCE EVALUATION

SWAP2 has integrated all the cited optimization methods
and is available online in SourceForge [37]. For performance
evaluation, Mira at Argonne National Laboratory [33] was
used as the test cluster; 32,768 computing nodes were allo-
cated for this experiment. Each compute node is equipped with
16 cores and 16 GB of memory; all nodes are connected with a
high-speed 5D-torus network with the bidirectional bandwidth
of 10 GB/s. The I/O storage system of Mira uses the IBM
GPFS system; it supports parallel file I/O defined in MPI-3.

First, a weak-scaling comparison between SWAP-
Assembler (SWAP for short) and SWAP2 was made with
the data selected from the 1000 Genomes project. In this
experiment the data size was increased from 256 GB to 4
TB as the number of cores increased from 1,024 to 16,384.
Figure 2 and Figure 12 show that SWAP2 has the following
three performance improvements over SWAP.

Scalability: SWAP2 scales to 16,384 cores, whereas SWAP
scales only to 4,096. We can see that excluding the time



Fig. 12: Time usage for each step of SWAP2 in processing the
data from the 1000 Genomes project. Here each computing
node has been allocated 4 processes.

used in graph simplification and distributed MSG graph con-
struction, the time usage for the other three steps by SWAP2
increases slightly with the increasing number of cores. The
data in Table I also confirms that the percentage of time
usage on these three steps is almost constant. Because the
1000 Genomes project has a fixed genome size of 3 billion
nucleotides, after the k-mer filtering step, the de Bruijn graph
has approximately the same number of nodes with the genome
size. With a fixed problem size, the time usage of the last two
steps is decreased almost in half when the number of cores
doubles.

Speedup: The time usage of SWAP2 is orders of magnitude
less than that of SWAP. With the fragment adjustment algo-
rithm and I/O data block size tuning, the input parallelization
step gains a 15X speedup over its previous version. In the
k-mer graph construction step, the communication efficiency
degradation has been resolved with a fixed communication
message size and a data pool isolating the communication
and I/O process. With these two solutions, a 23X speedup is
achieved. In the graph simplification step, by compressing the
communication protocol of SWAP’s lock-computing-unlock
schedule from 4 loops to 2 loops and sharing the idle time
between these loops, the time usage is 1.75 times less than
that of the previous version. The overall speedup of SWAP2
is 14 times faster than that of SWAP.

Efficiency: In order to compare the performance after opti-
mization with the system peak performance, the percentage of
I/O bandwidth, communication bandwidth, and memory usage
are illustrated in Figure 13. The I/O bandwidth of SWAP2 has
been improved from 1% to 18% on 4,096 cores (one rack), and
the communication bandwidth has been improved from 5% to
47%. Room for improvement remains, however, particularly in
memory usage, which shows the same trend as does SWAP.

To evaluate SWAP2’s strong-scaling scalability, we per-
formed an experiment with fixed problem size and increasing
number of cores. Here we selected 4 terabytes of data from the
1000 Genomes project, and the number of cores was increased
from 1,024 (or 512 nodes) to 131,072 (or 16,384 nodes). The

Fig. 13: Ratio of I/O bandwidth, communication bandwidth,
and memory usage with the system peak performance in
theory. The peak performance of I/O bandwidth and commu-
nication bandwidth are 32 GB/rack/s [33], [34], [31], [32] and
0.9 GB/node/s, respectively [35], [36]. Each computing node
equipped 16 GB memory has been allocated 4 processes; the
percentage of memory usage therefore is calculated by the
memory usage of each process divided by 4 GB.

Fig. 14: Time consumption results for the strong-scaling
experiment.

time usage results are presented in Table II and plotted in
Figure 14. In the figure, each step keeps a fixed proportion of
time usage as the number of cores increases; all five steps
are highly parallelized and scale at almost the same ratio.
The runtime results are presented in Table II. SWAP2 takes
2 minutes with 131,072 cores to assemble the 4 terabytes of
sequencing data, the largest dataset that has ever been tested.
The speedup of SWAP2 increases steadily and reaches 8.8
when the number of cores is 131,072, corresponding to an
efficiency of about 40%.

We also compared our work with another highly parallel
assembler, HipMer. The Yanhuang dataset of about 300 GB
was used [18], [38]. The runtime results in Table III show that
SWAP2 can assemble the dataset in 163 seconds using 16,384
cores on Mira. Because HipMer is not an open source project,



TABLE II: Time usage of SWAP2 collected for the strong-scaling test on a 4-terabyte dataset from the 1000 Genomes project.
Each computing node was allocated 4 processes (ppn = 4); time is measured in seconds.

No. Cores Input K-mer Graph K-mer MSG Graph Graph Total
Parallelization Construction Filtering Construction Simplification Time Usage

1,024 681 880.54 14.85 18.73 130.12 1725.24
2,048 1372.33 1268.96 61.33 140.66 850.58 3721.01
4,096 691.88 633.04 53.35 70.28 446.68 1906.96
8,192 346.23 328.91 26.61 23.79 240.32 972.55
16,384 207.15 184.86 13.2 17.33 115.43 541.46
32,768 114.26 107.16 6.6 6.06 60.57 297.38
65,536 56.2 70.76 3.28 3.1 28.24 165.01
131,072 51.53 64.71 1.63 1.62 14.22 138.39

TABLE III: Time usage of SWAP2 collected for the strong-scaling test on the human genome (Yanhuang genome dataset)
[18]. Each computing node was allocated 4 processes (ppn = 4); time is measured in seconds.

No. Cores Input K-mer Graph K-mer MSG Graph Graph Total
Parallelization Construction Filtering Construction Simplification Time Usage

1,024 117.55 281.44 19.08 185.05 1630.32 2266.72
2,048 59.81 140.56 9.63 92.56 838.18 1157.72
4,096 20.81 71.77 6.1 46.3 429.71 583.51
8,192 13.46 39.29 3.15 22.49 223.92 307.06
16,384 8.35 23.9 1.55 11.39 115.44 163.36
32,768 5.08 18.99 0.88 5.71 63.77 96.51
65,536 6.5 20.85 0.67 2.92 27.74 64.55

we directly took the results in [27] for comparison. Note that
Cray Edison [39], [40] is used by HipMer [27]. Compared with
Mira, Edison is 7.8 times faster with its dragonfly network, and
its single CPU core is 1.5 times faster [39], [40]. Using about
15,000 CPU cores on Edison, HipMer assembled (including
scaffolding) the Yanhuang dataset in 8 minutes. SWAP2 is
about 3 times faster than HipMer. Moreover, for the same
Yanhuang dataset, SWAP2 can further scale to 65,536 cores
on Mira and assemble the dataset in 64 seconds with a
parallel efficiency of 55%. The scalability of HipMer strongly
depends on the effectiveness and scalability of the oracle graph
partition mechanism, whereas SWAP2 is optimized with a
fully parallelized algorithm in every step, resulting in better
scalability and system efficiency than achieved by HipMer.

Although the work in this paper on SWAP2 is optimized
based on Mira, the strategies used are general and focus on
the algorithm level. We use no special instructions designed for
any special CPU or network architectures. Therefore SWAP2
can be used with other supercomputers with a particular value
for the data block size and initial message size L in order to
approach that supercomputer’s peak performance.

VI. CONCLUSION

In this paper, the most time-consuming steps of the SWAP-
Assembler—input parallelization, k-mer graph construction,
and graph simplification—were optimized in order to keep
the percentage of time usage in each step constant when the
number of cores increases. With these optimizations, the I/O
bandwidth improved from 2% to 18% on 4,096 cores (one
rack), and the communication improved from 5% to 47%.
In the experiment on the 1000 Genomes project dataset, the
weak-scaling results show that newly optimized assembler,

called SWAP2, scales to 16,384 cores; and the strong-scaling
results show that SWAP2 scales to 131,072 cores. The total
assembly time with 131,072 cores is 2 minutes. For the
Yanhuang dataset, SWAP2 shows a 3X faster execution time
and 4X better scalability than does HipMer. The experiments
show that the optimized SWAP2 can both scale up (3 times
faster than HipMer) and scale out to 131,072 cores. The
program can be downloaded from
https://sourceforge.net/projects/swapassembler.
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