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1 Automatic Generation of High-Performance
2 Convolution Kernels on ARM CPUs
3 for Deep Learning
4 Jintao Meng , Chen Zhuang, Peng Chen , Mohamed Wahib, Bertil Schmidt, Senior Member, IEEE,

5 Xiao Wang, Haidong Lan, Dou Wu, Minwen Deng, Yanjie Wei, and Shengzhong Feng

6 Abstract—WepresentFastConv, a template-based code auto-generation open-source library that can automatically generate high-

7 performance deep learning convolution kernelsQ1 of arbitrarymatrices/tensors shapes. FastConv is based on theWinograd algorithm,which is

8 reportedly the highest performing algorithm for the time-consuming layers of convolutional neural networks. ARMCPUs cover awide range of

9 designs and specifications, fromembedded devices toHPC-gradeCPUs. The leads to the dilemmaof how to consistently optimizeWinograd-

10 based convolution solvers for convolution layers of different shapes. FastConv addresses this problem by using templates to auto-generate

11 multiple shapes of tunedQ2 kernels variants suitable for skinny tall matrices. As a performance portable library, FastConv transparently searches

12 for the best combination of kernel shapes, cache tiles, scheduling of loop orders, packing strategies, access patterns, and online/offline

13 computations. Auto-tuning is used to search the parameter configuration space for the best performance for a given target architecture and

14 problem size. Results show 1.02x to 1.40x, 1.14x to 2.17x, and 1.22x and 2.48x speedup is achieved over NNPACK, ARMNN, and

15 FeatherCNNonKunpeng 920. Furthermore, performance portability experimentswith various convolution shapes show that FastConv

16 achieves 1.2x to 1.7x speedup and 2x to 22x speedup over NNPACKandARMNN inference engine usingWinograd onKunpeng 920. CPU

17 performance portability evaluation on VGG–16 show an average speedup over NNPACKof 1.42x, 1.21x, 1.26x, 1.37x, 2.26x, and 11.02x on

18 Kunpeng 920, Snapdragon 835, 855, 888, AppleM1, and AWSGraviton2, respectively.

19 Index Terms—AI, convolution, deep learning

Ç

201 INTRODUCTION

21DEEP learning (DL) inference is becoming a commonwork-
22load on edge devices, such as smartphones, and in data
23centers [1]. Thus, real-time, and often on-device, DL inference
24is becoming increasingly important. Convolution layers are
25themain computational bottleneck for the inference computa-
26tion of Convolutional Neural Networks (CNNs). Table 1
27shows that convolution layers are on average responsible for
2895% of the compute load for a list of widely usedCNNs.
29Three algorithms, namely direct convolution [7], GEMM-
30based [8], and Winograd [9], [10], are commonly used in pro-
31duction libraries to compute the operations of convolution
32layers. Among them, Winograd has recently attracted the
33majority of use and research attention (e.g., [9], [11], [11], [12],
34[13], [14], [15]) since it can perform unstrided convolutionwith
35the least amount of arithmetic operations [16]. More specifi-
36cally, in comparison to the two other algorithms, theWinograd
37algorithm can reduce the number of arithmetic operations by
38up to a factor of 5.04x [9]. Consequently, Winograd convolu-
39tion has became widely used and is supported by modern DL
40libraries such as ARM� Compute Library [17], NNPACK [18],
41Nvidia� cuDNN [19], and Intel� oneDNN [20]. However,
42although Winograd can offer significant speedups over other
43convolution algorithms [14], it remains a challenge to effi-
44ciently implement Winograd convolution on a large variety of
45ARM devices with different specifications. For instance,
46NNPACK when used as a backend in PyTorch delivers only
476% � 35% of the single core peak performance on convolution
48layers ofVGG–16 (depending on the utilizedARMprocessor).
49This instability in performance is also, overall, far below the
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of50 desired efficiency. Furthermore, using multiple cores for con-

51 volution layers of VGG–16 results only in a speedup between
52 2� and 4�when scaling the number of cores from 1 to 64 (i.e.
53 3% to 6%parallel efficiency).
54 The diversity in the design of ARM-based processors
55 presents a challenge for performance portable and effective
56 optimizations. ARM CPUs have been widely used in mobile
57 phones, embedded devices, consumer PCs, data center serv-
58 ers, and supercomputers. Thus, current ARM architectures
59 feature significantly different configurations with respect to
60 compute units, caches, and memory hierarchies. Clock fre-
61 quencies can vary from 100MHz to 3GHz and availablemem-
62 ory bandwidth can range from 10GB/s to 1.6TB/s. For the
63 cache hierarchy, [21], there is a complex and diverse configu-
64 ration at each level of cache (as shown in Table 4). Moreover,
65 cache sizes can vary between cores at the same level on one
66 ARMCPU (know asARMBig.Little [22], andDynamIQ [23]).
67 Additionally, FMA units, ROB sizes, pipelines, cache place-
68 ment policies, type of scheduler, and interconnections are all
69 redesign-able for SoC vendors [24]. As a consequence, there
70 are currently thousands of ARM SoCs with different configu-
71 rations available in the market. To demonstrate their diver-
72 sity, we compare six processors in Fig. 1: their AI (Arithmetic
73 Intensity) [25], [26] ranges between 1.55 and 14 Flops/Bytes.
74 This variability in AI leads to different bounds for the same
75 code running on different ARM CPUs, which poses a chal-
76 lenge to performance-portable optimization. More specifi-
77 cally, the AI of convolution operations is determined by its
78 input shapes with a corresponding value ranging anything
79 between 0.747 to 21.63 Flops/Bytes (in Table 5). Thus, both
80 hardware diversity and varying computation pattern are the
81 two challenges for Winograd optimization in DL that moti-
82 vates the work in this paper. It is important to note that hand-
83 coding optimizations for different ARMCPUs lead to convo-
84 luted codebases with heavy code branching and unsustain-
85 able technical debt. Previous work has so far mainly focused
86 on fixed AI with constant architecture specification on CPUs
87 or GPUs [7], [15]. This is the first work that considers the por-
88 tability of Winograd optimizations w.r.t. both changing com-
89 putation patterns and hardware diversity.
90 The concrete challenges of developing a transparent and
91 performance portable Winograd convolution library for
92 ARM CPUs to use in DL inference include: a) diversity of
93 target architectures (in terms of memory hierarchies and
94 compute capabilities), and b) the skinny tall and long rect-
95 angular matrices/tensors generated by CNNs [27] for which
96 existing BLAS libraries are not optimized for. Hand-tuning
97 libraries for each target specification is a futile task.

98This paper addresses these challenges by making the fol-
99lowing contributions:

1001) The Winograd algorithm consists of three stages:
101transforming the input to the Winograd domain,
102computing multiple tensor multiplication operations
103to perform convolution in theWinograd domain, and
104finally transforming the results from the Winograd
105domain. Since the repeated tensor multiplication
106operations are the bottleneck of Winograd, we devel-
107oped a highly tuned code auto-generator based on C
108++ templates (named TensorGEMM), it generates
109code optimized for computing tensor multiplications
110of arbitrary shapes (especially for skinny tall and long
111rectangular tensors). The auto-generated kernels also
112minimize the data movement in the reshaping phase
113and are optimized for efficient register and cache
114blocking for the considered target ARMCPU.
1152) We designed a transparent library (FastConv) for
116Winograd convolutions on ARM CPUs. The library
117internally generates the highest performing code vari-
118ant for the considered target CPU. The code variants,
119optimized for different targets, cover a wide range,
120and combinations, of optimizations: tuning the data
121layout for unit-strided access patterns, loop reorder-
122ing, packing strategies for data blocks to interleave
123indexing and packing the layout back to enable Ten-
124sorGEMM tuning, register blocking, and cache block-
125ing. We use an empirical auto-tuning strategy to
126search all parameter configurations for the best perfor-
127mance for a given hardware specification and convolu-
128tion problem size.
1293) To demonstrate the effectiveness of FastConv, we
130use a a variety of ARM processors ranging from
131embedded/mobile to server grade CPUs and compare
132the performance to two state-of-the-art libraries for
133inference: ARM NN inference engine [28] and
134NNPACK [18]. Our portability test with various con-
135volution shapes shows that FastConv achieves 1.2x to
1361.7x speedup and 2x to 22x speedup over NNPACK
137and ARM NN inference engine using Winograd on
138Kunpeng 920with all 8 cores. Device portability evalu-
139ations on the VGG–16 model show an average
140speedup over NNPACK of 1.42x, 1.21x, 1.26x, 1.37x,

TABLE 1
Computational Footprint of Various Layer Types Measured in

Terms of MFlops for Six CNN Architectures

Network Convolution layer FC Pool Others
Wino General

VGG-16 [2] 29,271 0 236 6 13
GoogLeNet [3] 1,836 1,180 2 12 166
ResNet-50 [4] 3,528 3,827 4 2 407
MobileNet–V1 [5] 0 1,088 0 0 73
Inception–V3 [6] 4,684 6,209 2 25 27
Inception–V4 [4] 7,459 15,911 2 45 46

HereWino, General, FC, Pool, and Other denotesWinograd convolution, general
convolution, fully-connected, pooling, and other types of layers, respectively.

Fig. 1. Roofline analysis [25], [26] of the machine balance of six main-
stream Arm CPUs used in mobile phones, desktops, and data centers.
835, 855, and 888 are short name for Snapdragon 835, 855, and 888
respectively. M1, 920 and AWS denote Apple M1, Kunpeng 920, AWS
Graviton 2. The input shape of convolution also affects the Arithmetic
intensity (AI) of Winograd algorithm. We plot the AI of four typical layers
from VGG-16 with green dotted lines to demonstrate this variation.

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
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141 2.26x, and 11.02x on Kunpeng 920, Snapdragon 835,
142 855, 888, AppleM1, andAWSGraviton2, respectively.
143 4) FastConv is open source and publicly available at
144 https://github.com/Mengjintao/FastConv.
145 The rest of this paper is organized as follows: In Section 2,
146 we present the background and related work. Section 3 elab-
147 orates on our implementation for FastConv library. Section 4
148 shows the evaluated result. Finally, Section 5 concludes.

149 2 BACKGROUND

150 This section first introduces the convolution operator and
151 then elaborates on related work.

152 2.1 Convolution

153 A convolutional layer maps an input tensor D in the order
154 of [batch, input_channel, height, width] (or “NCHW”) and
155 a filter tensor G in the order [output_channel, input_chan-
156 nel, height, width] (or “KCRS”), to an output tensor S of
157 shape [batch, output_channel, height, width] (or “NKEF”).
158 Images are processed individually during inference when
159 data-parallel batch processing is infeasible. Consequently,
160 we set N ¼ 1 for better readability, without sacrificing gen-
161 erality; the analysis holds when adjusting for N > 1 to add
162 an extra dimension of coarse-grained data parallelism. The
163 convolution layer computes the output tensor S by accumu-
164 lating the input tensor along the input channels dimensionC
165 to reduce K � C finite-impulse-responses to exactly K out-
166 put channels:

Sk;x;y ¼
XC�1

c¼0

XR�1

u¼0

XS�1

v¼0

Dc;xþu;yþv �Gk;c;u;v (1)

168168

169 Where 0 � k < K, 0�c < C, 0 � x < H �Rþ 1, 0 � y <
170 W � S þ 1.
171 When using a non-unit stride, the sums over x and y are
172 incremented with step size stride > 1. The naı̈ve evaluation
173 of Equation (1) results in Q

�ðK � CÞ � ðH �WÞ � ðR� SÞ�
174 operations. When R� S is 3� 3, general convolution can be
175 viewed asWinograd convolutions. The 2-dimensionalWino-
176 grad formula can bewritten as:

S ¼ AT
�
GgGT
� �� BTdB

� ��
A ¼ AT

�
U � V

�
A (2)

178178

179 With Equation 2, the actual computation of a Winograd con-
180 volution, illustrated in Fig. 2 using F ð2� 2; 3� 3Þ as an
181 example, can be partitioned into four stages:

182 (I) Filter transformation: U ¼ GgGT

183 (II) Input transformation: V ¼ BTdB
184 (III) Tensor Multiplication:M ¼ U � V
185 (IV) Output transformation: S ¼ ATMA
186 Here B, G, A are constant matrices with fixed values
187 defined in [9], g is a R� S matrix embedding the filter
188 entries, and d is a 4� 4 (for F ð2� 2; 3� 3Þ schema) or 8� 8
189 (for F ð6� 6; 3� 3Þ schema) sliding window tile extracted
190 from the input images. F ð2� 2; 3� 3Þ requires 4� 4 ¼ 16
191 multiplications, whereas the standard algorithm requires 2�
192 2� 3� 3 ¼ 36. Thus the number of arithmetic operations are
193 reduced by a factor of 2.25x with F ð2� 2; 3� 3Þ or similarly
194 5.04x with F ð6� 6; 3� 3Þ, in comparison to general convolu-
195 tion in Equation 1 [9].

1962.2 Arm and Arm Neon Intrinsics

197We briefly introduce the Arm and Arm Neon intrinsics
198(more details on Arm Neon can be found in the Arm Neon
199user guide [29]). Arm is a family of reduced instruction set
200computing (RISC) architectures for computer processors.
201Arm Ltd. develops the architecture and licenses it to other
202companies, who in turn design their products that imple-
203ment one of those architectures, including systems-on-chips
204(SoC) and systems-on-modules (SoM) used in both mobile
205devices and servers. Arm Neon is an advanced single
206instruction multiple data (SIMD) architecture extension
207included in all Armv8 devices [30], [31], it supports 128-bit
208vectors, and can execute 128 bits or 4�32-bit floating-point
209operations at a time.

2102.3 Related Work

211Convolution algorithms have been researched widely in the
212past years.Direct convolution[7], [32] andGEMM-based convo-
213lution [8], [33] are two major algorithms used in the calcula-
214tion of Equation (1). Direct convolution is implemented by
215Intel� oneDNN for X86 CPU[7] and NCNN for Arm CPU
216[32]. oneDNN achieves 60% � 80% of theoretical peak per-
217formance with offline data layout pre-packing, whereas
218NCNN avoids that offline routine and keeps the original ten-
219sor layout in favor of its framework flexibility, but at the cost
220of the lower percentage of peak performance (30%). GEMM-
221based convolution [8], [33] rearranges the input images of
222shape “NCHW” into “N � CRS � EF” in a step known as
223GEMM-based convolution, and then invokes N times a
224GEMM routine to calculate the output image of “NKEF”.
225The open source implementation of GEMM-based convolu-
226tion for Arm architecture is provided by NNPACK [18] and
227used by PyTorch [34].
228Winograd convolution [9] is implemented by oneDNN,
229cuDNN, and NNPACK using batched GEMM [35], [36],
230[37], [38]. NNPACK [18], Arm NN inference engine [28],
231and FeatherCNN [10] are three public available libraries
232with Winograd implementations optimized for Arm CPUs.
233NNPACK and Arm NN inference engine follows Lavin
234et al. [9] approaches using Winograd F ð6� 6; 3� 3Þ and
235F ð4� 4; 3� 3Þ repectively, while FeatherCNN adopts a
236novel TensorGEMM reformulated Winograd algorithm of
237both F ð6� 6; 3� 3Þ and F ð2� 2; 3� 3Þ.
238CodeAutomation is a useful technique for performance opti-
239mization. The just-in-time compilation (JIT) and automatic
240code generation are becoming increasingly used in the devel-
241opment of next-generation high-performance convolution

Fig. 2. An example of 2D convolution by Winograd algorithm F ð2� 2; 3�
3Þ. The Winograd algorithm consists of a pipeline of filter transformation,
input transformation, tensor multiplication, and output transformation.

https://github.com/Mengjintao/FastConv
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242 kernels used in back-end libraries [39], [40], [41]. An effective
243 JIT approach is used by LIBXSMM [39] to map assembly
244 instructions to opcodes in order to avoid invoking the com-
245 piler. LIBXSMM can handle problem dimensions that are nor-
246 mally not available and targets high-performance execution
247 of small GEMMs with M �N �K < 803 on Intel x86. The
248 shape and number of LIBXSMM’s kernels are determined at
249 compilation time and are thus not suitable for the diversity of
250 abnormalmatrix shapes generated byDLmodels.
251 TVM [40] is an end-to-end compilation and optimization
252 stack for the deployment of DL workloads. TVM is designed
253 to deal with a large number of hardware configurations and
254 problem shapes generated by DL. However, TVM underper-
255 forms on fine-grained kernels for specific hardware tar-
256 gets [42], [43], [44], [45]. TVM’s fine-grained kernels are
257 comprised of three parts: one is generated by the compilers
258 [46], [47], the second is generated by Halide [48], and the third
259 part comes fromother libraries, e.g., LIBXSMM[39] andOpen-
260 BLAS [49]. Without manual expert tuning and highly efficient
261 auto-generation of the fine-grained kernels and fine-grained
262 scheduling, TVM’s high performance cannot be achieved.

263 2.4 Novelty

264 FeatherCNN [10] optimized a CNN inference framework on
265 Arm CPUs, with an emphasis on providing thirteen types of
266 CNN layers, e.g., convolution, pooling. The GEMM-based
267 convolution and Winograd algorithms were manually opti-
268 mized for accelerating the convolution operations in Feath-
269 erCNN. It is worth mentioning that FeatherCNN is used in
270 production by Tencent’s <<Honor of Kings>> game [50] as
271 the inference engine. FeatherCNN didn’t employ an auto-
272 mated approach for the skinny tall matrices in GEMM opera-
273 tions, it followed the same approach as Arm NN inference
274 engine [28] and NNPACK [18]: hand-tuned implementa-
275 tions. Additionally, FeatherCNN is not performance portable
276 to a wide range of Arm CPUs. More specifically, the manual
277 optimization of FeatherCNN makes it incapable of pushing
278 the performance limits for convolution computations on var-
279 iants of Arm architectures having different specifications.
280 To address the performance portability and transparency
281 issues with FeatherCNN (and also NNPACK [18] and Arm
282 NN inference engine [28]), in this work we propose a code
283 auto-generation framework built on C++ templates for por-
284 table and transparent high-performance DL inference. We
285 auto-generate convolution kernels using a configurable
286 Winograd algorithm to reduce the memory traffic and
287 improve the data locality, e.g., cache/register blocking, for a
288 specific Arm target. The automated convoluted kernels con-
289 sistently outperform state-of-the-art libraries (e.g., Arm NN
290 inference engine [28] and NNPACK [18]) on a wide range of
291 Arm CPUs. The results are shown in Section 4.

292 3 FASTCONV: A LIBRARY FOR AUTO-GENERATING

293 WINOGRAD CONVOLUTION KERNELS

294 In this section, our four-fold optimization for Winograd
295 convolutions is illustrated in Fig. 3. First, in Section 3.1 we
296 propose the formulation of the improved Winograd algo-
297 rithm that we use with our C++ templates auto-generator
298 (TensorGEMM) to avoid the interleaved data packing over-
299 head [9]. Second, in Section 3.2 we elaborate on how the

300four steps of tile transformation, parameterized cache block-
301ing, register blocking, and loop reordering are applied in
302our Winograd formulation. Third, Section 3.3 discusses the
303computational intensity analysis, inner-kernel shape selec-
304tion, and template-based auto-generation of a series of
305highly efficient fine-grained kernels. Fourth, in Section 3.4
306we discuss an auto-tuning scheme that provides the com-
307posability of cache-aware blocking sizes and dozens of ker-
308nels with different shapes to deliver the highest performance
309by searching the parameter space for optimal configurations.
310Finally, we briefly discuss our library’s user interface and
311implementation.

3123.1 Improved Winograd Formulation With
313TensorGEMM

314As shown in Fig. 2, the Winograd algorithm [9] contains
315three memory-intensive transformation stages and one
316compute-intensive matrix multiplication stage. The input
317transformation stage results in V iterations over output chan-
318nels K while the filter transformation generating the filtered
319input U is independent of the image tiles, and can be calcu-
320lated offline. The output transformation reshapes the result
321tensor, M, and accumulates the final results in the output S.
322The tensor multiplication stage is the bottleneck of the Wino-
323grad algorithm [15].
324In the third stage, i.e., tensor multiplication, let Mk;d ¼
325

PC�1
c¼0 Uk;c � Vc;d be the aggregate tensor multiplications

326along the input color channels, then Mi
k;d ¼ ðUi 	 V iÞk;d

327denotes the ith entry of a Winograd tile where 0 � i < u

328and 	 is a matrix product. Note that F ðt� t; r� rÞ produces
329tiles with u ¼ ðtþ r� 1Þ2 elements resulting in u ¼ 16
330entries in case of F ð2� 2; 3� 3Þ. The coordinate representa-
331tion Mi

k;d can be reinterpreted as plain matrix multiplication
332over a batch of u factors Ui and V i:

Mi
k;d ¼

XC�1

c¼0

Ui
k;c � V i

c;d 8i; k; d: (3)

334334

335Where 0 � k < K, 0 � d < H 0 �W 0 and 0 � i < u. We
336identify theWinograd index 0 � i < uwithL lanes in vector
337registers (shown in Fig. 4), where u ¼ 16 in the case of F ð2�
3382; 3� 3Þ. Since current Arm architectures feature 128 bit vec-
339tor registers storing L ¼ 4 single precision floating-point val-
340ues, we need p ¼ 4 no-warm-up passes to compute a total of
341u ¼ 16 independent contributions for F ð2� 2; 3� 3Þ. The
342remaining loops over the output channel index k, the spatial

Fig. 3. A step-by-step flow chart of our Winograd optimizations in
FastConv.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
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344 multi-threading.
345 We reformulate the transformations as C ¼ AT ðATBT ÞT ¼
346 ATBA to exploit fast transposition in registers (for matrices
347 stored in row-major order). In case of Winograd convolution,
348 Equation 2 can be rewritten to account for the equality ðU �
349 V ÞT ¼ UT � V T to be:

S ¼ AT ðU � V ÞA ¼ AT ðAT ðUT � V T ÞÞT ; (4)
351351

352 According to Equation (4), we can finally reformulate four
353 stages of the Winograd algorithm to use our TensorGEMM
354 library for arbitrarily shaped tensor multiplication (more
355 details on TensorGEMM in Section 3.3):

Input Transform:V T ¼ BT ðBTdÞT (5)

357357

358

Filter Transform:UT ¼ GðGgÞT (6)

360360

361

TensorGEMM:ðMT Þp ¼ ðV T Þp � ðUT Þp; 0 � p <
u

L
(7)

363363

364

Output Transform:S ¼ AT ðATMT ÞT : (8)366366

367

368 Our Winograd algorithm that supports arbitrary dimen-
369 sions follows the above four equations (also presented in
370 Algorithm 1). The input, kernel, and output transform use
371 Lavin’s formulas [9] listed in lines 5, 7, and 12, respectively.
372 However, the data layout of the resulting tensors (input,
373 weight, and output tensors in Algorithm 1) has to be
374 reshaped before and after the execution of TensorGEMM.
375 Those reshape routines are executed in lines 6, 7, and 11.
376 TensorGEMM is invoked at line 10. There are p no-wArm-
377 up passes/calls of TensorGEMM routine to calculate MT ¼
378 V T � UT . In Fig. 4, 4 passes of TensorGEMM routine for a
379 128 bit vector registers of an Arm architecture are colored
380 with yellow, blue, gray, and red. This scheme is the basis
381 for the kernel of our Winograd algorithm for which we
382 apply cache and register blocking in the following section.
383 Lavin’s strategy [9], [15] can be performed using batched
384 GEMM, i.e., u consecutive calls to GEMM using matrices of
385 dimensions K � C and C � ðH 0 �W 0Þ. While this reduces
386 the code complexity, performance can suffer from memory-
387 bound transformations, interleaved indexing and packing
388 for GEMM routines, and the low computational intensity for
389 special shapes of matrices [10]. When L is set to be one,

390Algorithm 1 can be viewed as Lavin’s strategy by substitut-
391ing TensorGEMM in line 10with a call to oneGEMMroutine.
392Using multiple GEMMs will introduce a number of perfor-
393mance issues on common CPU architectures: a) before call-
394ing multiple GEMMs, the data blocks generated by the input
395transformation are scattered into u matrix pairs using inter-
396leaved indexing, b) after multiple GEMMs, the layout of the
397result needs to be packed back into a unit-strided order, and
398c) both operations involve significant data movement in
399input and output transformations and thus significantly
400reduce the overall performance. TensorGEMM however
401only issues p ¼ 4 passes of TensorGEMM routine for Arm
402architecturewithNeon intrinsics which significantly reduces
403the datamovement cost of theWinograd algorithm.

404Algorithm 1. Winograd Algorithm Using TensorGEMM.
405u is 16 for F ð2� 2; 3� 3Þ or 64 for F ð6� 6; 3� 3Þ. L is the
406Instruction Width (4 for Arm v8 Architecture). Batch
407Size is Set to One.

408Input: input[C][H][W], kernel[K][C][3][3]
409Output: output[K][E][F]
4101 E ¼ ðW þ padLeftþ padRight� 3Þ=strideþ 1
4112 F ¼ ðH þ padLeftþ padRight� 3Þ=strideþ 1
4123 H

0 ¼ Eþr�1
r ,W

0 ¼ Fþr�1
r

4134 p ¼ u
L

4145 InputTrans(input[C][H][W], V T [C][H
0 
½W 0 
½u]); // Eqn 5

4156 Reshape(V T [C][H
0 
½W 0 
½u], V T [p][C][H

0 
½W 0
][L])

4167 KernelTrans(kernel[K][C][3][3], UT [K][C][u]); // Eqn 6
4178 Reshape(UT [K][C][u], UT [p][K][C][L])
4189 for i ¼ 0 to p� 1 do
41910 TensorGEMM( UT [i][K][C][L], V T [i][C][H

0 
½W 0
][L],MT [i]

420[K][H
0 
½W 0

][L]).; // Eqn 7

42111 Reshape(MT [p][K][H
0 
½W 0

][L],MT [K][H
0 
½W 0 
½u])

42212 OutputTrans(MT [K][H
0 
½W 0 
½u], output[K][E][F]).; // Eqn 8

4233.2 Proposed Winograd Optimization for Arbitrary
424Dimensions

425In this section, we introduce the optimizations we use for
426the Winograd algorithm in order to allow for arbitrary
427dimensions. This is mainly driven by the need to enable
428performance portability for Arm CPUs with different spec-
429ifications. The main optimization considerations [16], [27],
430[40], [46] are as follows: a) how to adjust the data layouts
431to minimize data movement, b) how to effectively do cache
432blocking for L1/L2 that vary in size from one processor to
433another, c) how to fully utilize the vector registers with
434register blocking schemes, and d) how to improve data
435locality by avoiding redundant memory/cache accesses
436with data packing, minimize cache misses by loop order,
437etc. A performance portable and transparent library to
438generate highly efficient code with all the above considera-
439tions, and without the need for manual tuning, can boost
440the productivity of deploying DL services/solutions onto
441millions of Arm SoC chips with a large space of hardware
442configurations. With the above considerations in mind,
443our optimizations for a performance portable Winograd
444algorithm are as follows.
445First, tile transformation and fusion is used to adjust the data
446layout tominimize datamovement. As shown inAlgorithm1,
447to reduce the cache miss rate, the data layout after input,

Fig. 4. Upper left: 2-dimensional illustration of Equation 3, where each
element is a vector of length 16. Bottom right: a corresponding 3-dimen-
sional illustration of F ð2� 2; 3� 3Þ.
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448 filter, and output transform should be reshaped to ensure a
449 continuousmemory access pattern for TensorGEMM’smulti-
450 plication kernels. However, explicit implementation of trans-
451 formations and reshaping routines result in extra data
452 movement and waste time on memory accesses. Thus we
453 fuse the data packing with filter, input, and output transfor-
454 mations to relieve the memory access pressure. As shown in
455 Algorithm 2, we fuse the transformation and reshape routine
456 into one transformation routine, and write the result tensor
457 directly into the target data layout. This modification is pre-
458 sented in lines 2, 3, and 6 in Algorithm 2 on input, kernel, and
459 output transformations. Finally,H

0
andW

0
can also be fused

460 into one dimension of tiles by setting tiles ¼ H
0 �W

0
: this

461 further simplifies the following strategies.

462 Algorithm 2. Optimized Winograd Using Tile Transfor-
463 mation and Fusion

464 Input: input[C][H][W], kernel[K][C][3][3]
465 Output: output[K][E][F]
466 13 tiles =H

0 �W
0

467 14 InputTrans(input[C][H][W],V T [p][C][tiles][L]); // Eqn 5

468 15 KernelTrans(kernel[K][C][3][3],UT [p][K][C][L]); // Eqn 6

469 16 for i ¼ 0 to p� 1 do
470 /* Eqn 7 */

471 17 TensorGEMM(UT [i][K][C][L], V T [i][C][tiles][L], MT [i]
472 [K][tiles][L])
473 18 OutputTrans(MT [p][K][tiles][L],output[K][E][F]) // Eqn 8

474 Algorithm 3. Optimized Winograd With Cache Blocking
475 on Output Channel and Tiles Dimension.

476 Input: input[C][H][W], kernel[K][C][3][3]
477 Output: output[K][E][F]
478 19 oBnum ¼ K=oB
479 20 tBnum ¼ tiles=tB
480 21 for u ¼ 0 to oBnum do
481 22 for v ¼ 0 to tBnum do
482 23 InputTrans(input[C][H][W],V T [p][C][tB][L]);
483 // Eqn 5

484 24 if onoffKernel then
485 25 KernelTrans(kernel[u�oB:(u+1)�oB][C][3][3], UT [p]
486 [oB][C][L])
487 26 for i ¼ 0 to p� 1 do
488 27 TensorGEMM(UT [i][oB][C][L], V T [i][C][tB][L],
489 MT [i][oB][tB][L]).; // Eqn 7

490 28 OutputTrans( MT [i][oB][tB][L], output[u � oB : (u+1)
491 � oB][E][F])

492 Second, cache blocking can be applied on the output chan-
493 nel K and tiles dimensions to increase the data reuse in L1/
494 L2 cache. It is similar to Goto’s strategy [16] but applied on a
495 new TensorGEMM routine. When the complete matrices UT

496 and V T can not be stored in a cache, we block (i.e. tile) the UT

497 matrix on the dimension of the output channel, and block V T

498 on the dimension of tile. The dimension of the input channel
499 on UT and V T is not blocked for two reasons: a) blocking the
500 input channel may interrupt the instruction pipeline of
501 TensorGEMM’s multiplication kernel, b) the value of input
502 channels ranges between 3 to 512 in most neural networks.
503 For values greater than 512, the data volume in the cache can
504 be held by adjusting the input channel and tiles. For oB and

505tB being the block sizes of output channelK and input tiles,
506respectively, the cache blocking strategy is illustrated in
507Algorithm 3. The number of blocks is calculated in lines 2
508and 3. Each block is processed with the code from line 6 to
509line 11. In line 6, tB slides a window of shape ðtþ rÞ � ðtþ rÞ
510to form the tensor V T . Thus the working space footprint for
511input is limited to only tB sliding windows instead of whole
512tensor. There is a similar data locality optimization done on
513kernel transformation. Additionally, one can also pre-pro-
514cess the weight tensor offline since the weight tensor is con-
515stant during the inference computation, but at the cost of

516accessing ðtþrÞ2
9 more data. Thus, it is important to balance the

517trade-off betweenmemory accesses and computational costs
518for the offline kernel transformations. The data layout of the
519above two transformation routines ensures a continuous
520memory access pattern in TennsorGEMM along the input
521channel C dimension. We can adjust oB and tB to block V T ,
522UT , andMT for the L2 cache (based on the L2 size of a specific
523target). Finally, the output tensor MT is accumulated and
524transformed to the output in line 11.

525Algorithm 4. Optimizing TensorGEMM With Register
526Blocking, m is the Register Block Size of Tiles, n is the
527Register Block Size of Output Channels.

528Input: inTensor[C][tB][L], kerTensor[oB][C][L]
529Output: outTensor[oB][tB][L]
53029 nnum ¼ oB

n ;mnum ¼ tB
m

53130 for i ¼ 0 to nnum do
53231 for j ¼ 0 tomnum do
53332 UT

r [m][C][L]=UT [i�n:(i+1)�n][C][L]
53433 V T

r [C][n][L]=V T [C][j�n:(j+1)�n][L]
535/ * as a kernel in Listing 1 * /

53634 Innerkernel_mxn(UT
r [m][C][L], V T

r [C][n][L], MT
r [n][m]

537[L])

538Third, TensorGEMM is a GEMM-like matrix multiplica-
539tion routine, thus we use register blocking in TensorGEMM.
540The register blockingwe use in TensorGEMM is described in
541Algorithm 4. It is noteworthy that the kernel of Innerker-
542nel_mxn is called by Algorithm 4 and an example of the
543Neon-optimized kernel can be found in Listing 1. The regis-
544ter blocks (tiles) are shown in the loops in lines 30 and 31.
545Each block is processed with the code from line 32 to line 34.
546We extract the register blocks V T

r and UT
r from the corre-

547sponding cache blocks V T and UT . Then in line 34,
548TensorGEMM’s multiplication kernel routine MT is calcu-
549lated. A C++ temple-based code generation method is
550applied to generate a series of efficient multiplication kernels
551for TensorGEMMwith high compute intensity (we elaborate
552on this in the following subsection).
553Fourth, in order to determine the optimal packing of dif-
554ferent transformations into different cache levels (L2/L3,
555etc.), a similar way [40] but deep coupling loop reordering is
556used for controlling the memory access pattern. The loops
557in lines 21 and 22 in Algorithm 3 for cache blocking, and the
558loops in lines 30 and 31 in Algorithm 4 for register blocking
559are first unrolled to simplify loop reordering. The loop reor-
560dering on the cache blocking loops should assure that V T

561will be scanned once and held in the L1 cache whereas UT

562would be scanned multiple times and stored in the L2

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
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563 cache, or vice versa. The flexibility of loop reordering pro-
564 vides the possibility of removing redundant data movement
565 in cache/register blocking optimizations, depending on the
566 cost of repeated scanning of UT or V T .

567 Listing 1. An Example of Generating m� 4 Inner Ker-
568 nels With C++ Template. Kernels Such as 4� 4, 3� 4, ...,
569 1� 4 are Generated at Compile Time for Corner Cases
570 Without Any Runtime Overhead.

571 3.3 Generation of TensorGEMMMultiplication
572 Kernels

573 TensorGEMM is a compute-intensive step in our Winograd
574 implementation and requires more than 80% of the total
575 time [15]. Therefore a set of multiplication kernels of arbi-
576 trary shapes (m� n) should be developed to optimally fit
577 different problem sizes, especially for skinny tall matrices.
578 We use Armv8 Neon primitives [29], [51] which support
579 Fused-Multiply-Add (FMA) instructions for 32-bit floating-
580 point numbers. Note that for most inner tiling sizes m� n,
581 the TensorGEMM’s multiplication kernel sets up a group of
582 accumulator registers, loads m tensors from a column in A,
583 and n tensors from a row in B (as shown in Fig. 5). Subse-
584 quently, the tensors are multiplied and accumulated in the
585 blue box D and are stored in ðm� nÞ registers. When the
586 computation progresses to the bottom border of A and the
587 right of B, the register contents, namely the accumulators,
588 are written back to the memory. Fig. 5 shows a schematic
589 view of the described computational pattern, each tensor
590 (an Armv8 register) holds 4 floats.

591We analyze the ratio of computation to memory opera-
592tions [16] (known as Arithmetic Intensity (AI)). First, the
593arithmetic computation requires 2 �m � n FMA instructions.
594Only loads of operands from A and B are incurred at each
595compute iteration. The write-back only occurs when it tra-
596verses the entire loop. We estimate the lower bound of AI as
597the following formula:

AI ¼ 2 �m � n
mþ n

; (9)
599599

600Which monotonically increases with larger m and n. Gener-
601ally speaking, a kernel function with larger AI performs bet-
602ter, i.e., can run closer to the device’s peak performance.
603However, we require m and n registers to load operands
604from A and B, and m�n registers for the accumulators,
605respectively. Therefore, m and n have to satisfy the follow-
606ing constraint:

ðmþ nþm � nÞ � R:
608608

609Where R is the number of accessible registers on each pro-
610cessor core (32 for Armv8 architecture).
611A multiplication kernel is the smallest computational unit
612of TensorGEMM. When designing the optimal multiplica-
613tion kernel, there are two principles we rely on to use the 32
614Neon vector registers, as follows:

615(I) Make full use of the compute units, fill the pipeline
616with instructions, and reduce pipeline stalls.
617(II) Increase the arithmetic intensity to improve efficiency.
618The goal of the first principle is to exploit instruction-level
619parallelism (ILP) for the multiplication kernel. Accordingly,
620we focus on designing a series of different shapes of multipli-
621cation kernels to cover various skinny tall and long rectangle
622shapes, whereas LIBXSMM [39] and OpenBLAS [52] employ a
623single kernel shape of highest AI while ignoring the skinny tall
624cases. We list seven feasible candidates for multiplication ker-
625nel shapes having AI values above or equal to four (listed in
626Table 2), and calculate the respective register usage.We imple-
627ment those kernel functions with C++ templates, in order to
628ensure that code is generated at the compilation phase. We
629carefully tuned five kernel function templates by hand, and
630the other two multiplication kernels of the shapes ð4� 4Þ and
631ð6� 3Þ can be generated by the other optimized templates of
632the shapes ð5� 4Þ and ð7� 3Þ. In addition to the aforemen-
633tioned shapes, we also generate 22 auxiliary multiplications
634kernelswith the aforementioned five kernel templates to better
635handle the corner cases, especially skinny tallmatrices.
636In Listing 1, the implementation of the multiplication
637kernel template of the shapeðm� 4Þ is presented. The

Fig. 5. Illustration of the processing order in TensorGEMM. Each ele-
ment in the matrix is a tensor, which maps to a 128-bit vector register
containing 4 floats on Arm.
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638 parameter m determines the shape of the generated kernels.
639 We can get a multiplication kernel of the shape ð5� 4Þ by
640 setting m ¼ 5 in Listing 1. The lines 3 to 17 are used to con-
641 trol the load instruction with m. Lines 18 to 38 are the most
642 compute-intensive part of this TensorGEMM kernel, the
643 number of instructions used in this loop is also determined
644 by m. Finally, m controls the number of instructions used to
645 write the data back. All the conditional branching will not
646 exist in the generated kernels.
647 The selection of inner kernels depends on the shape of
648 input TensorGEMM matrices, the cache blocking size, and
649 the characteristics of the multi-level memory-cache hierar-
650 chy of the given SoC chip. The multiplications kernel with
651 the best performance will be selected through auto-tuning.
652 To solve corner cases, when the size of the multiplication
653 kernel is not divisible by the cache blocking factor in the col-
654 umn dimension. Zero padding is applied to account for the
655 vector register and cache-line sizes. When there is a mis-
656 alignment in the row dimension, the C++ template (e.g,
657 Innerkernel_mx4 in Listing 1) is used to generate more multi-
658 plications kernels during compile time. For example, with
659 the kernel of shape ðm� 4Þ, our template will generate extra
660 five kernels, such as ð5� 4Þ, ð4� 4Þ, . . ., ð1� 4Þ, to handle all
661 corner cases on the row dimension.

662 3.4 Auto-Tuning in FastConv

663 The runtime parameters and their range of values listed in
664 Table 3 are used for tuning our library (FastConv). Let S
665 denote the size of the search space for the parameter:

S ¼ r � c �
X

m;n2Table 2

tiles

m

� �
� K

n

� �� 	
: (10)

667667

668 Where r and c are the number of feasible values for the var-
669 iants loopReorder and onoffKernel, respectively. Here, r

670 denotes the four cases of loop order in cache blocking (line
671 21 and 22 in Algorithm 3 ) and register block (line 30 and 31
672 in Algorithm 4); c dennotes the onoffKernel Flag in line 24
673 for Algorithm 3. Thus the values of r=4 and c=2 are used
674 in our implementation. To ensure divisibility of the register
675 and cache block size, and to avoid misalignment in both the
676 row and column dimensions, the tile cache block size tB
677 must be amultiple ofm and less than the total number of tiles
678 tiles. The output channel block size oB needs to be multiple
679 of n andwill be less thanK. As there are sevenmultiplication
680 kernel shapes in Table 2, we accumulate them on each case,
681 and then the total number of available choices for our param-
682 eters can be computedwith Equation (10).
683 With these parameters, the actual execution pattern of
684 the whole Winograd algorithm can be controlled with the
685 generated multiplication kernels of TensorGEMM. The opti-
686 mal parameter configuration with the best performance can

687be obtained by tuning over this parameter space. The opti-
688mal parameter configurations for a given problem size and
689hardware configuration are gathered and stored from off-
690line runs, and the code with the best performance can be
691regenerated with those parameters.
692There are several steps in auto-tuning. First, the configu-
693rations of all possible ranges (intervals) of parameters define
694the parameter search space. Second, A tuning database is
695constructed to record the configurations of parameters’ val-
696ues and their corresponding performance results. Addition-
697ally, several algorithms such as grid search, random
698selection, and model-based prediction strategies, can be
699used along with the tuning database as a configuration gen-
700erator to generate alternatives of configurations, for perfor-
701mance evaluation on a given target. Third, the code is
702generated using the parameters in the new configuration,
703then an offline performance test is done and the results are
704recorded in the tuning database. Finally, after a round of
705evaluations, the configuration with the best performance is
706used to auto-generate the code for the library and can be
707deployed to be used in production.
708Searching the entire parameter space for parameter con-
709figurations yielding the best performance is time-consum-
710ing. One would usually not search the entire space, and
711instead use grid search, random selection, or even model-
712based prediction strategies to evaluate a small subset of the
713parameter space. In our auto-tuning module, the type and
714the granularity of the search strategies can be customized
715by the user. By default we use grid search as the default
716strategy: at most 4096 configurations are evaluated and
717stored in our tuning database. Finally, the configuration
718with the best performance will be selected and used for
719code generation with the best performance.
720The auto-tuning strategy described above is performed off-
721line. The time spent on auto-tuning for each convolution case
722varies from several minutes to several hours, depending on
723the input shape of convolution, the computing capability of
724the hardware, and the granularity of the grid search strategy.

7253.5 User Interface and Implementation

726A transparent and easy-to-use programming interface is
727designed for the proposed library. This library is header-
728only and therefore can be embedded into other third-party
729software stacks to accelerate inference on Arm CPUs with
730optimal convolution performance. Our convolution class
731contains three public function members: Init(), Tuning(),
732and Forward(). For library users, the user only needs to call
733three predefined routines:

TABLE 2
Seven Typical Shapes of Multiplications

Kernels for TensorGEMM

m 3 3 4 4 5 6 7
n 7 6 5 4 4 3 3
Number of registers 31 27 29 24 29 27 31
AI (as in Eqn 9) 4.2 4 4.44 4 4.44 4 4.2

TABLE 3
Runtime Parameters and the Search Space of the

Our Portable Winograd Implementation

Parameters Description Value range

C input channels N/A
K output channels N/A
H;W height and width of input image, respectively. N/A
m m tensors for register block on VT [2, 7]
n n tensors for register block on UT [2, 7]
tB tile cache block size [0, tiles/m]
oB output channel block size [0, K/n]
onoffKernel on/offline kernel transform tag (c in Eqn 10) 0, 1
loopReorder loop reorder tag(r in Eqn 10) 0, 1, 2, 3

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
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735 a target Arm CPUs.
736 (II) Tuning(): Configuring algorithms and parameters via
737 offline auto-tuning before the actual deployment of
738 the model.
739 (III) Forward(): In production phase, a call to Init() reads
740 the configurations generated in the previous step,
741 and the auto-generated kernel(s). Subsequently, For-
742 ward() is called to deliver the optimal computing per-
743 formance on the target Arm CPU.
744 FastConv is the first work, to the authors’ knowledge,
745 that uses a reconfigurable design. The library internally gen-
746 erates the highest performing code variant for the given tar-
747 get Arm CPU. The code variants, optimized for different
748 targets and convolution shapes, cover a wide range, and
749 combinations, of optimizations: tuning the data layout for
750 unit-strided access patterns, loop reordering, packing strate-
751 gies for data blocks to interleave indexing, packing the lay-
752 out back to match the auto-generated TensorGEMM inner
753 kernel of different shapes, and register/cache blocking.
754 These optimizations are combined together, in a transparent
755 fashion, to deliver the optimal performance for the given
756 convolution shape on the target chip, thus enabling its per-
757 formance portability on different types of Arm CPUs.

758 4 EVALUATION

759 FastConv is developedwith C++ andNeon intrinsics. The cor-
760 rectness of our implementation has been verified against the
761 naive implementation. The performance of the Winograd
762 implementation is compared against FeatherCNN [10],
763 NNPACK [18], Arm NN inference engine[28] and other back-
764 end libraries[27], [39], [40], [52] supporting GEMM routines.
765 We evaluate six Arm processors. Three flagship mobile/SoC
766 chips: Snapdragon 835, 855 and 888 from Samsung Galaxy S8,
767 Xiaomi 9, and Xiaomi 11, respectively. Two data center serv-
768 ers: Huawei Kunpeng 920 and AWS Graviton2 M6g instance.
769 One consumer PC: Apple MacBook Pro M1. Snapdragon 835
770 is equipped with four performance cores (Cortex-A73) with
771 2MB cluster sharing L2 cache, and four energy-efficient cores
772 (Cortex-A53) with 1MB cluster sharing L2 cache. Snapdragon
773 855 is designed with one performance core (Cortex-A76) with
774 512KBL2 cache, three performance coreswith 256KBL2 cache,
775 four efficient cores with 128KB L2 cache, and DynamIQ 4MB
776 cluster shared L3 cache. Snapdragon 888 shares a similar archi-
777 tecture with 855 but with double the L2 cache size. The hard-
778 ware specifications of test platforms are detailed in Table 4.
779 We use VGG–16 [2], Resnet–50 [4], Densenet–121 [54]
780 and Inception V4 [4] networks for performance evaluation.

781For VGG–16, the dimensions of TensorGEMM multipliers
782using Winograd are K � ðC � uÞ and ðC � uÞ � ðH 0 �W 0Þ, as
783described in Table 5. The computational load together with
784its multiplication stage’s Arithmetic Intensity (AI) for each
785layer is also calculated and listed in the Table. VGG–16’s
786convolutional layers cover a wide variety of representative
787shapes generally composed of two typical patterns: large
788images with relatively few channels and small images with
789more channels. Similar shapes also appear in Resnet [4],
790Densenet [54], Squeezenet [55], and many other frequently
791used neural network architectures.

7924.1 Performance Evaluation

793According to the introduced optimization techniques, the
794performance is evaluated for the following:

795(I) A step-by-step evaluation of individual optimiza-
796tions of the FastConv Winograd over the Winograd
797kernels of other libraries.
798(II) A scalability evaluation of the multi-threaded Fast-
799Conv Winograd.
800(III) A roofline comparison and analysis for the multi-
801threaded Winograd implementation.
802(IV) Performance portability evaluation of FastConv using
803different convolution shapes over different ArmCPUs.
804We first conduct a step-wise evaluation on Winograd
805using VGG–16 convolution layers. We use our library with
806default settings (i.e. no optimizations) as a baseline in
807Fig. 6a. We use the default setting of oB ¼ 40, tB ¼ 3 and a
808fixed multiplication kernel of the shape 4� 4. We enable the
809following optimizations one after the other (i.e. step-wise):
810cache blocking tuning (+Cache), register blocking tuning

TABLE 4
The Hardware Specifications of Our Test Platforms

CPU Name Cores #CPUs (GHz) L1 Cache (Bytes) L2 Cache (Bytes) L3 Cache (Bytes) Type

Snapdragon 835 4+4 4@2.45+4@1.90 - 4@2M-share+4@1M-shared none SoC/mobile
Snapdragon 855 4+4 (1@2.84+3@2.42)+4@1.80 - (1@512K+3@256K)+4@128K 8@4MB-shared SoC/mobile
Snapdragon 888 4+4 (1@2.84+3@2.42)+4@1.80 - (1@1M+3@512K)+4@128K 8@4MB-shared SoC/mobile
Apple M1 4+4 4@3.204+4@2.064 4@128K+4@64K 4@12M-shared+4@4M-shared none Consumer PC
Kunpeng 920 8 8@2.60 8@64K 8@512K 8@32MB-shared Datacenter/server
AWS Graviton2 64 64@2.50 64@64K 64@1M 64@32MB-shared Datacenter/server

Arm big.LITTLE is a heterogeneous computing architecture with a performance cluster of cores and power-efficient cluster of cores, Energy saving is ensured with
clustered switching mechanism. This means that in most cases Arm SoC devices have two clusters of CPUs, and can only use one cluster at a time. ”-” denotes
that L1 cache size is not released by the vendor and also can not be measured by tools such as likwid [53].

TABLE 5
Shape, Computational Load and Arithmetic Intensity (AI)

in Winograd F ð6� 6; 3� 3Þ’s Multiplication Stage
of VGG–16 Conventional Layers

Layer C K H, W H’�W’ H’�W’ GFLOP AI for
F(2�2; 3�3) F(6�6; 3�3) F(6�6; 3�3)

1_1 3 64 224 12544 1444 0.17 0.747
1_2 64 64 224 12544 1444 3.70 11.24
2_1 64 128 112 3136 361 1.85 12.44
2_2 128 128 112 3136 361 3.70 19.86
3_1 128 256 56 784 100 1.85 15.91
3_2 256 256 56 784 100 3.70 21.63
4_1 256 512 28 196 25 1.85 9.44
4_2 512 512 28 196 25 3.70 10.25
5_1 512 512 14 49 9 0.92 2.77
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812 nations of all these optimizations (i.e. Cache+Reg+Sched)
813 together is FastConv. The performance results of Feath-
814 erCNN are included in this evaluation. We plot its speedup
815 against our baseline. The step-by-step single-thread optimi-
816 zation results are averaged over 10 runs on Kunpeng 920 in
817 Fig. 6a. The results show that an average of 1.13x, 1.19x and
818 1.25x speedups are contributed by the tuning optimization
819 of Cache, Cache+Reg, and Cache+Reg+Sched. FeatherCNN is
820 slower than the baseline and FastConv on the layers before
821 4_1 and 5_1, respectively. FeatherCNN results show higher
822 performance on extremely small input tensor sizes on layer
823 5_1 by using the External Packing strategy at which the data
824 is packed in an extra memory buffer with a contagious
825 memory access pattern [10]. This simplifies the implementa-
826 tion and improves the efficiency for smaller input shapes.
827 Finally, FastConv achieves speedups between 1.07x to
828 1.40x, depending on different layers of VGG–16.
829 In addition, we conduct a comparison with three other
830 Winograd implementations on Arm CPU, which includes
831 FeatherCNN [10], Arm NN [28], and NNPACK [18] (Fig. 6b).
832 In comparison to FeatherCNN, FastConv is 1.22x and 2.48x
833 times faster (except for layer 5_1). The decreasing speedup
834 with the shrinking input image size can be explained by the
835 fact that the strided read pattern for both input and output
836 transform does not work well with 4-way skewed associative
837 cache on small image sizes with close memory access distan-
838 ces, across both different image rows and channels. This could
839 be fixed by adjusting the memory access pattern and data lay-
840 out. A comparison to NNPACK is also performed and the
841 results show that FastConv is close to 1.40x times faster on
842 both terminal layers, and is 1.02x to 1.15x better thanNNPACK
843 on themiddle layers.When comparedwithArmNN inference
844 engine including kernel transformation, FastConv is 1.14x to
845 2.17x faster as there is a run-time overhead of the input tensor
846 reshaping from ”NHWC” to ”NCHW”, and another overhead
847 for the strided data scattering and gathering operation before
848 and after the GEMM routines. Additionally, the Arm NN
849 inference engine employs a F ð4� 4; 3� 3Þ shape for itsWino-
850 grad implementation,whichmay also degrade performance.
851 We perform a layer-wise scalability test on the Winograd
852 implementation with VGG–16. Our multi-threaded imple-
853 mentation of the Winograd algorithm is compared with
854 NNPACK. The scaling results on AWS Graviton2 Arm
855 server with 64 cores are presented in Fig. 7. According to
856 Fig. 7, FastConv and NNPACK can scale to 64 and 16 cores,

857respectively. There is an almost linear speedup with Fast-
858Conv when running the middle layers of VGG–16. When
859dividing the speedup value by the number of threads, we
860can get the parallel efficiency numbers. When using all 64
861cores, FastConv achieves 50% to 65% percent of parallel effi-
862ciency on the middle layers and between 32% to 42% on the
863first and last layers. The paralleling efficiency of NNPACK
864on 64 cores, however, ranges between 3% to 6%, on average.
865In comparison to FastConv, NNPACK shows poor effi-
866ciency and scalability performance in our experiments.
867We do a roofline analysis for themost time-consuming step
868(i.e. multiplication stage) in the Winograd algorithm. In our
869Winograd optimization, we have minimized the memory
870movement overhead in transformation. At the same time, we
871are also trying to improve the computational efficiency in the
872most time-consuming step. We report the roofline results of
873the implementation of the multiplication stage in FastConv/
874TensorGEMM,NNPACK, andArmNN inference enginewith
875multiple GEMMs. The results are presented in Fig. 8. The roof-
876line analysis on Kunpeng 920with all 8 CPU cores for the three
877libraries is presented by Fig. 8a. Besides the first and last layers
878in VGG–16, FastConv/TensorGEMM is much closer to the
879peak in comparisonwith the other two libraries (note: Y-axis is
880log-scale). For the first and last VGG–16 layers, the multiplica-
881tion using FastConv/TensorGEMM and GEMMs are all
882bounded by DRAM and L3, respectively. In these two cases,
883FastConv/TensorGEMM is still closer to the DRAM or L3
884peaks. The results also indicate there is room for furtherperfor-
885mance improvement for the long rectangular or skinny tall
886cases for the Winograd algorithm. For the AWS Graviton2
887Arm server, its per core cluster-shared L3 cache size is less

Fig. 6. Step-wise speedup evaluation and speedup comparison of FastConv on Kunpeng 920 using VGG-16. (a) Individual optimizations are added one by
one in a step-wise evaluation. (b) Speedup comparison againstWinograd kernels fromFeatherCNN, ArmNN inference engine, andNNPACK. The baseline
for (a) is the untuned FastConv initializedwith a default setting of oB ¼ 40, tB ¼ 3, with a fixedmultiplication kernel of the shape 4� 4.

Fig. 7. Layer-wise scalability of VGG–16 on Winograd implementations
of NNPACK and FastConv on AWS Graviton2 Arm Server.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
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888 than its L2 cache size. Thus we don’t plot the L3 roofline in
889 Fig. 8b. FastConv/TensorGEMM and Arm NN inference
890 engine have the same performance in the last VGG–16 layer
891 (5_1). On other layers with all 64 cores, FastConv/Tensor-
892 GEMMachieves an order ofmagnitude improvement over the
893 other libraries. More importantly, for the long rectangular or
894 skinny tall convolution shapes in the first and last layer, Ten-
895 sorGEMM achieves a performance close to the L2 peak, in
896 comparison to the other libraries (appearing to be bounded by
897 memory, and not L2). Those performance improvements are
898 attributed to our blocking, scheduling, and auto-tuning
899 optimizations.

900 4.2 Portability Evaluation

901 In this section, we evaluate the performance portability of
902 FastConv on various convolution shapes and six Arm CPU
903 devices. The convolution layers from VGG–16 [2], Resnet–
904 50 [4], Densenet–121 [54], and Inception V4 [4] are evaluated
905 on all six platforms.
906 We evaluate the portability of FastConv (w.r.t. to input
907 shapes) on various shapes of input layers on Kunpeng 920
908 with all 8 cores. The layer-wise efficiency and speedup results
909 with nine layers from VGG–16 and convolution layers from
910 Resnet–50, Densenet–121, and Inception V4 are shown in
911 Fig. 9. Note that the seven middle layers of VGG–16 generate
912 more square-shaped matrices than the two layers on both
913 ends. The convolution layers from Resnet–50, Densenet–121,
914 and Inception V4 generate small input image sizes with fewer
915 input and output channels, that results in skinny tall and long
916 rectangular GEMM/TensorGEMM input shapes. The default

917input tensor layout is set to be ”NCHW”, the input data layout
918transformation for GEMM-based convolution is included in
919the reported time to make a consistent comparison with the
920Winograd algorithm. We report the absolute performance in
921the unit of GFlop/s 1 The speedup results of FastConv over the
922other three libraries are presented in Fig. 9. FastConv with the
923Winograd algorithm is 4.30x to 28.36x faster than NNPACK’s
924GEMM-based algorithm. In most cases, it is beyond
925Winograd’s algorithmic speedup of 5.04, mainly due to the
926optimization and auto-tuning of our reconfigurable Winograd
927algorithm with auto-generated TensorGEMM kernels. For
928NNPACK’sWinograd kernel, FastConv is 1.23x to 2.84x faster,
929which highlights the gains from our optimizations efforts in
930FastConv. When compared with the Arm NN inference
931engine, FastConv is approximately 1.47x to 3x faster on layers
932from VGG–16 layers, and 1.41x to 22.7x faster on layers from
933the three other networks. FastConv gains a larger speedup
934over the other libraries on Resnet–50, in comparison to VGG–
93516. That demonstrates our approach for auto-generating opti-
936mized convolution kernels is portable to various types of con-
937volution shapes.
938We test the performance portability on six Arm devices
939with nine layers from VGG–16. As multi-threaded deploy-
940ment over multi-cores in mobile phones is not controllable
941on Android, we evaluate a single-thread on the big (perfor-
942mance) core on the three mobile processors. For the other

Fig. 9. Layer-wise multi-threaded performance comparison for convolution layers in VGG–16, Resnet–50, Densenet–121, and Inception V4 on Kun-
peng 920 with all 8 cores. The gray, green and blue lines are the speedup of FastConv over the implementation of NNPACK’s GEMM-Based algo-
rithm, NNPACK, and Arm NN’s Winograd algorithm, respectively. Besides VGG–16, the shape of each convolution layer in Resnet–50, Densenet–
121, and Inception V4 is denoted with an ordered tuple (input channel size, output channel size, and width/height of the input 2D tensor).

Fig. 8. Layer-wise multi-core roofline comparison for the bottleneck multiplication stage of Winograd algorithm with VGG–16 on Kunpeng 920 and
AWS Graviton2 (Y-axis log-scale).

1. The performance in the unit of GFlop/s may be written as
2�K�C�H�W �R�S�t�1�10�9, where t is the runtime in seconds, the other
symbols are listed in Table 5.
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944 Conv can automatically select the best parameters and con-
945 figure the C++ template to generate optimized code for the
946 target convolution shape and Arm architecture. NNPACK
947 however does not have this functionality.We havemeasured
948 the speedup of FastConv over NNPACK on their best per-
949 forming Winograd implementation (in Fig. 10. In compari-
950 son with NNPACK, FastConv achieves speedups of 1.42x,
951 1.21x, 1.26x, 1.37x, 2.26x, and 11.02x on average over Kun-
952 peng 920, Snapdragon 835, 855, 888, Apple M1, and AWS
953 Graviton2, respectively. A notable observation is that with
954 newer chips, FastConv gains better speedups. Huawei Kun-
955 peng 920 is based on Cortex-A57 (released in 2012), Snap-
956 dragon 835, 855, and 888 are based on Cortex-A73, Cortex-
957 A76, and Cortex-X1 (released in 2015, 2018, and 2020 respec-
958 tively), and Apple M1 with Firestorm architecture released
959 in 2021. An important fact to consider is that existing libraries
960 are highly hand-tuned to target some special architectures
961 released several years ago.With new chips being introduced,
962 and the high pace at which the field of deep learning evolves,
963 developers are facedwith the futile task of redoing the hand-
964 tuned optimizations. For instance, NNPACK’s kernel has
965 not been updated for years, and the latest architecture ported
966 by OpenBLAS is Cortex-A73 (released in 2016). Thus, it is
967 vital to have a performance portable library (FastConv) that
968 can support both old and new Arm SoCs and servers. Fur-
969 thermore, the whole porting process is fully automated in
970 FastConv and can save enormous engineering effort for
971 deployingDLmodels on billions of Arm SoC chips in phones
972 and Internet of Things (IoT) devices [56], [57].

973 4.2.1 Comparison With TVM

974 TVM can only auto-tune GEMM kernels for convolution
975 operations by using the Im2col algorithm, thus we compare
976 to TVM by including the Im2col in our call to the GEMM
977 routines.
978 We implemented a reconfigurable Im2col algorithm com-
979 bined with automatically generated GEMM code that is
980 optimized with the techniques described in this paper. We
981 refer to the GEMM based convolution implementation as
982 FastConv-GEMM. It is open-sourced, and we include it in
983 the same GitHub repo https://github.com/Mengjintao/
984 FastConv. FastConv–GEMM has been compared to
985 AutoTVM, AutoTVM + LIBXSMM, AutoTVM + Open-
986 BLAS [40], [58], OpenBLAS [52], and LibShalom [27]. The

987overhead of the Im2col transformation is excluded. The
988reconfigurable library for GEMM with default parameters
989on cache block size and inner kernel shapes of 8� 8 is
990labeled as FastConv without auto-tuning, while the auto-
991tuning enabled version is labeled as FastConv + tuning. The
992achieved performance on Kunpeng 920 is shown in Fig. 11.
993OpenBLAS shows better performance than AutoTVM, and
994AutoTVM that is tuned over OpenBLAS and LIBXSMM.
995LibShalom [27] shows performance improvement over both
996autoTVM and OpenBLAS. It is worth mentioning that Lib-
997Shalom is optimized for small and irregular-shaped
998GEMMs with start-of-art expert hand-tuning methodolo-
999gies. Our reconfigurable library FastConv–GEMM with
1000default settings is comparable to LibShalom and also out-
1001performs other libraries. With auto-tuned FastConv, we fur-
1002ther gain between 2% to 17% performance improvement for
1003different layers and rank first on all layers (except layer
10045_1). Note that the matrices generated by the middle layers
1005of VGG16 are more square-shaped, whereas the matrices of
1006the terminal layers are mostly long rectangular or skinny
1007tall. This explains why the first three layers and the last
1008layer in VGG–16 benefit more from auto-tuning, in compari-
1009son to middle layers. It can be concluded that our auto-tun-
1010ing methodology on GEMM with the reconfigurable library
1011can improve the performance of long rectangular and
1012skinny tall matrices, and at the same time has no negative
1013effects on square matrices.

Fig. 10. Layer-wise multi-threaded performance results with VGG–16 on six ARM CPU SoC devices. The X-axis shows the layer name in VGG–16.
The Y-axis is the speedup and absolute performance value in GFlop/s of FastConv and NNPACK on Winograd algorithm.

Fig. 11. Step-wise evaluation of FastConv’s GEMM implementation for
Im2col on Kunpeng 920. The x-axis is layer names from VGG–16
(Table 5). The left y-axis plots the performance in GFlop/s and the right
y-axis plots FastConv’s auto-tuning speedups over FastConv–GEMM.
Note that the theoretical peak performance of a single core in Kunpeng
920 is 41.6 GFlop/s.
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1014 4.3 Discussion

1015 In this section, we briefly discuss some insights we observe
1016 from analyzing the experimental results.

1017 4.3.1 Effect of Architecture Features on Optimizations

1018 FastConv’s offline tuner can generate auto-tuning logfiles
1019 of the best configurations during our evaluation experi-
1020 ments. We highlight three optimization patterns from the
1021 analysis of these log files using a single thread. First, the
1022 log files generated by the cache blocking step confirm ideal
1023 blocking with Algorithm 3, i.e. only compulsory cache
1024 misses, in L2/L3 cache (depending on which cache level
1025 the auto-tuning blocking is for). Second, inspecting the
1026 auto-tuning logfiles of register blocking with Algorithm 4
1027 revealed that for most kernel shapes the best decomposi-
1028 tion of the input shape was used (w.r.t. to the reduction in
1029 register pressure) while avoiding the cost for data pad-
1030 ding. For example, the kernel shape of ð7� 3Þ is used for
1031 the last layer of VGG–16 and thus successfully avoids the
1032 data padding operations; for other big square input tensor
1033 shapes the register kernel shape of ð5� 4Þ with highest
1034 arithmetic intensity is selected by our auto-tuner. Finally,
1035 the offline kernel transformation in Algorithm 3 reduced
1036 the computational requirements for kernel transforma-
1037 tions, in all cases, when using a single thread and enabled
1038 us to saturate the memory bus. The above cache-aware
1039 decomposition/blocking of input shapes, extended from
1040 Goto’s work [16], optimally selects the register blocking for
1041 kernel shapes. The loop reordering method, inspired by TVM
1042 [40], [58], also provides an advantage over NNPACK [18] and
1043 ArmNN inference engine [28].
1044 We also analyzed the multi-threaded auto-tuning logfiles
1045 generated by FastConv’s offline tuner on Kunpeng 920, AWS
1046 Graviton2, andAppleM1.Wehighlight four optimization pat-
1047 terns for multi-threaded auto-tuning. First, effective cache
1048 blocking is observed, similar to the case of a single core. Sec-
1049 ond, the loop reordering step imitates the parallelism over the
1050 inner-kernel [59] by scattering threads on register blocking
1051 loops instead of cache blocking loops and tends to keep the
1052 blocking size on the dimension of the input channel as large as
1053 possible to saturate the instruction pipeline. This is consistent
1054 with our analysis in Section 3.2 on cache blocking optimiza-
1055 tions. Third, the most frequently used kernels that are selected
1056 by the auto-tuner have the shape of ð4� 5Þ or ð4� 4Þ, which
1057 provides the highest arithmetic intensity for both common
1058 and corner case kernels. Finally, offline kernel transform is dis-
1059 abled for multi-thread cases to save memory bandwidth and
1060 avoid memory access conflicts; this is a different pattern from
1061 the results of a single thread.

1062 4.3.2 Lower and Mixed Precision

1063 Parts of the Arm processor families, such as Snapdragon 835
1064 and Kunpeng 920, we experiment with in this paper do not
1065 belong to the ARMV8.2–A [60] architecture that supports
1066 FP16 and Int8. Arm CPUs adopting the ARMV8.2–A archi-
1067 tecture started to appear in market in 2020. Considering
1068 there is still a large number of ARM devices not supporting
1069 ARMV8.2–A, this work is focused on FP32 to ensure their
1070 compatibility. When using FP16 and Int8 precisions we can
1071 reduce the required storage of DL models and also improve

1072the inference performance. If we assume independence
1073from the restrictions of NEON instructions, our work can
1074use Int4/8 and FP16 in our TensorGEMM templates, where
1075the number of issued passes p (as in Equation 7) of Tensor-
1076GEMM can be reduced exponentially. This would be help-
1077ful in further reducing, or even eliminating, the required
1078interleaved packing data movement in the Winograd
1079algorithm.

10805 CONCLUSION

1081We have presented a library named FastConv that is perfor-
1082mance portable for Winograd convolution operations on
1083many types of recent Arm CPUs. A combination of several
1084technologies is used to deliver transparency andperformance
1085portability. We use C++ templates to generate multiple
1086shapes of manually tuned multiplication kernels fully opti-
1087mized for high arithmetic intensity. FastConv is designed to
1088search for the best combination of register and cache blocking
1089sizes, scheduling of loop iterations, packing strategies, access
1090patterns, and online/offline computations. Auto-tuning is
1091also applied to search the configurations for the best perfor-
1092mance for the considered target devices and problem sizes.
1093Our experimental layer-wise evaluation onVGG–16 confirms
1094that after tuning our Winograd reconfigurable Library,
1095speedups of 2.0x and 1.1x can be achieved on average over
1096Arm Inference engine and NNPACK, respectively, when
1097running VGG–16 layers on Kunpeng 920. Our performance
1098portability evaluations on different models further show that
1099an average speedup of 1.21x, 1.55x, 1.72x, and 2.08x is
1100achieved on Snapdragon 835, 855, 888, andAppleM1, respec-
1101tively. The entire porting process is fully automated and can
1102thus save enormous engineering work for the deployment of
1103DL models on millions of Arm SoC chips in mobile phones
1104and IoT devices.
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