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Abstract—Deep Learning is ubiquitous in a wide field of applications ranging from research to industry. In comparison to time-

consuming iterative training of convolutional neural networks (CNNs), inference is a relatively lightweight operation making it amenable

to execution on mobile devices. Nevertheless, lower latency and higher computation efficiency are crucial to allow for complex models

and prolonged battery life. Addressing the aforementioned challenges, we propose FeatherCNN – a fast inference library for ARM

CPUs – targeting the performance ceiling of mobile devices. FeatherCNN employs three key techniques: 1) A highly efficient

TensorGEMM (generalized matrix multiplication) routine is applied to accelerate Winograd convolution on ARM CPUs, 2) General layer

optimization based on custom high performance kernels improves both the computational efficiency and locality of memory access

patterns for non-Winograd layers. 3) The framework design emphasizes joint layer-wise optimization using layer fusion to remove

redundant calculations and memory movements. Performance evaluation reveals that FeatherCNN significantly outperforms state-of-

the-art libraries. A forward propagation pass of VGG-16 on a 64-core ARM server is 48, 14, and 12 times faster than Caffe using

OpenBLAS, Caffe2 using Eigen, and NNPACK, respectively. In addition, FeatherCNN is 3.19 times faster than the recently released

TensorFlow Lite library on an iPhone 7 plus. In terms of GEMM performance, FeatherCNN achieves 14.8 and 39.0 percent higher

performance than Apple’s Accelerate framework on an iPhone 7 plus and Eigen on a Samsung Galaxy S8, respectively. The source

code of FeatherCNN library is publicly available at https://github.com/tencent/feathercnn.

Index Terms—Convolutional neural networks, ARM architecture, inference computation, tensorGEMM
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1 INTRODUCTION

THE historic shrinking of the manufacturing process of
semiconductors over three orders-of-magnitude has

powered 50 years of advances in High Performance
Computing. During the last decade, single-core perfor-
mance of modern CPUs has been stagnating due to hard
architectural limitations of silicon-based processors. The
free lunch is over, so to speak. While server CPUs strug-
gle to compete with Moore’s law, the accumulated com-
pute capacity of mobile devices continues to grow at
Moore’s rate. First, from 2014 to 2017, the peak perfor-
mance (see Table 1) of A series chips built in Apple

devices has improved by a factor of 3.1, while Snap-
dragon performance has improved 21.8� over 4 years.
Second, new architectures such as ASIC [1], Risc-v [2],
and DSP invigorate the mobile market, thus causing a
decline in price and shortening of tape-out cycles. Third,
in 2017 alone, 1.5 billion mobile phones have been sold.
Assuming 50 GFlops average performance per device,
their overall theoretical peak performance outmatches
the world’s fastest supercomputer – Summit – located in
Oak Ridge National Laboratory by a factor of 397 [3].

In the recent past, a plethora of Deep Learning applications
have dispersed from an exclusively scientific domain into the
consumer market. The traditional design of deep classification
and regression networks incorporates both the time-consum-
ing training of model parameters and lightweight inference on
heavyweight processors such as high-end CUDA-enabled
accelerator boards or even GPU clusters. In the context of
mobile computing, centralized processing of real time input
data is considered intractable, as these devices are expected to
generate unprecedented amounts (petabytes) of data which
would have to be transferred between cloud and edge devices.
Hence, inference operations performing forward-pass evalua-
tions of already trained neural networks should be delegated
to edge devices.

The existence of powerful mobile processors in combina-
tion with on-device inference establishes the need for highly
efficient inference solutions in order to support complex mod-
els and sustaining battery life. Inference on edge devices is
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challenging since: (1) There is a diverse set of chips and soft-
ware environments. Edge devices may contain ARM CPUs,
GPUs, FPGAs, or other specialized hardware such as neural
processing units (NPUs). In addition,we have to deal with dif-
ferent software environments, namely operating systems
covering iOS, Android, embedded Linux, and programming
models includingNeon/Vulkan/OpenCL/OpenGL. Among
them, ARM CPUs are prominent owing to their broad
deployment on mobile devices and the consistent program-
ming model across various software platforms. (2) Basic
primitives in Convolutional Neural Networks (CNNs)
exhibit vastly different behavior in terms of compute inten-
sity, memory bandwidth, and latency which may be inter-
leaved in a non-trivial manner. Their individual and joint
optimization is a crucial task. (3) Traditional computation
patterns of aforementioned primitives may exhibit redun-
dant calculations wasting valuable resources. Hence, detect-
ing and eliminating superfluous re-computation of quantities
can increase performance. (4) Inference computation exhibits
inherently less parallelism than data parallel training since
entities are processed one by another which demands for
orthogonal parallelization techniques.

Our contributions are three-fold:

� Optimizing Winograd convolutions using small kernels:
We reformulate the constituent transformations of
the Winograd algorithm to support efficient SIMD
vectorization. Furthermore, a novel TensorGEMM
subroutine based on Internal Packing and External
Packing techniques is introduced allowing for two
times higher performance compared to established
GEMM routines for matrix multiplication.

� Non-Winograd layer optimization: We accelerate gen-
eral, depth-wise convolution and pooling layer com-
putation using offline kernel packing techniques and
cache block adaptation to further increase efficiency.

� Lightweight framework design and layer fusion: A slim
and self-contained inference framework is devel-
oped. We further increase inference throughput
using layer fusion. This is achieved by reusing inter-
mediate results stored in registers in order to miti-
gate superfluous memory accesses.

Performance evaluation of FeatherCNN reveals that our
implementation is orders-of-magnitude faster than state-
of-the-art solutions. Using FeatherCNN on a 64-core ARM
server, a forward-pass of VGG-16 is 48, 14 and 12 times faster

than Caffe [4] with OpenBLAS [5] backend, Caffe2 [6] with
Eigen [7] backend, and NNPACK [8], respectively. More spe-
cifically, the forward-pass for VGG-16 operates with 10 frames
per second (FPS) on the ARM server, and 3.52 FPS on an
iPhone 7 plus. In addition, FeatherCNN outperforms the
recently released TensorFlow Lite [9] library by a factor of 3.19
on an iPhone 7 plus. In terms of GEMM performance, Feath-
erCNN achieves 14.8 and 39 percent higher performance than
Apple’s Accelerate framework [10] on an Apple iPhone 7 plus
and Eigen [7] on a SamsungGalaxy S8, respectively.

The rest of the paper is organized as follows. Mathematical
foundations of inference computation are discussed in Sec-
tion 2. Three optimization approaches on TensorGEMM accel-
erated Winograd convolution, general layer optimization and
layer fusion are described in Section 3. Performance evaluation
is carried out in Section 4. Section 5 discusses previouswork on
inference optimization. Section 6 concludes the paper.

2 INFERENCE COMPUTATION USING CNNS

2.1 Mathematical Foundations

Convolutional Neural Networks (CNNs) approximate dif-
ferentiable functions as a contiguous cascade of affine maps
that are interleaved with non-linearities such as activation
functions, extreme value and mean value projections (max/
min/average-pooling), as well as normalization and drop-
out layers. The main computational load during inference
can be attributed to matrix-vector and matrix-matrix prod-
ucts. Table 2 shows that convolutional layers occupy more
than 95 percent of the computational load in four commonly
used networks. Note that we abbreviate Winograd-style
convolutions as Winograd, general convolutions as General,
depth-wise convolutions as DW, fully-connected layers as
FC, and pooling layers as Pool. In particular, we distinguish
between three classes of convolutional layers:

� Winograd-style convolution layers: Apply several filter
masks of shape 3� 3 to an input image using unit
stride and subsequently agglomerate input color
channel contributions.

� Depth-wise convolution layers: Treat contributions of
color channels independently without subsequent
agglomeration.

� General convolution layers:Do not fit any of the two defi-
nitions of aforementioned convolutional layer types.

TABLE 1
The Theoretical Peak Single-Precision Performance in GFlops
and Memory Bandwidth in GB/s of Selected Chips used in Edge

and Server Devices During 2014 to 2017

SOC Name Year BW Performance in GFlops

(GB/s) CPU GPU Overall

Apple A8 2014 12.8 44.8 115.2 160
Apple A9 2015 25.6 88.8 172.8 261.6
Apple A10 2016 25.6 112.3 384.6 495

Snapdragon 410 2014 8.5 19.2 10.8 30
Snapdragon 616 2015 12.8 35.2 29.7 129.8
Snapdragon 821 2016 29.9 37.4 260.0 297.4
Snapdragon 835 2017 29.9 78.4 576.0 654.4

TABLE 2
Computational Footprint of Various Layer Types Measured in

Terms of MFlops for Four CNN Architectures

Network Convolution layer FC Pool Other

Wino General DW

VGG-16 29,271 0 0 236 6 13
GoogLeNet 1,836 1,180 0 2 12 166
ResNet-50 3,528 3,827 0 4 2 407
MobileNet–V1 0 1,052 33 0 0 73
Inception–V3 4,684 6,209 0 2 25 27
Inception–V4 7,459 15,911 0 2 45 46

Here Wino, General, DW, FC, Pool and Other denotes winograd convolution,
general convolution, depth-wise convolution, fully-connected pooling and
other types of layers respectively.
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In the following, we briefly discuss the mathematical
foundations of those aforementioned layers.

A convolutional layer maps a batch consisting of N input
images of shape H �W and C color channels onto N output
images of shape E � F and K color channels. We assign the
corresponding tensor ranks in the order [batch, channel,
height, width] resulting in an “NCHW” signature for the
input and “NKEF” for the output. In general, the convolu-
tional layer combines contributions of all ranks except rank
zero – the batch identifier. Hence, distinct images within a
batch can be processed independently. Moreover, images
are usually processed one by another during inference such
that data parallel batch processing is infeasible. Conse-
quently, we setN ¼ 1 for better readability.

The general convolutional layer computes the cross-
correlation between fixed-sized filters of shape R� S for all
combinations of K channels of the output image Sk;x;y and
C channels of the input image Dc;x;y. The corresponding
parametrization Gk;c;u;v is a 4th degree tensor with signature
“KCRS” which stores the R� S filter weights for every
channel combination ðk; cÞ. Contributions of input channels
are accumulated in order to reduce K � C finite-impulse-
responses to exactlyK output channels:

Sk;x;y ¼
XC�1

c¼0

XR�1

u¼0

XS�1

v¼0

Dc;xþu;yþv �Gk;c;u;v ; (1)

where 0 � k < K, 0 � c < C, 0 � x < H �R, 0 � y <
W � S. When using non-unit stride, the sums over x and
y would increment with step size stride > 1. The na€ıve
evaluation of Equation (1) results in Q

�ðK � CÞ� ðH �WÞ �
ðR� SÞ� operations. Note that it is possible to reduce
the theoretical time complexity for filter shapes R� S �
log ðH �WÞ to a log-linear dependency in the number of
pixels by employing fast convolution using point-wise
Hadamard products in Fourier space [11]. However, main-
stream CNN architectures rely on the iterative evaluation of
small filters (usually 3� 3) over a relatively large feature
map (from 12� 12 to 224� 224 and even larger) which rules
out spectral approaches from the very beginning. A third –
less known – approach is the Winograd algorithm [12]
which reduces the number of evaluations in Equation (1)
by exploiting the algebraic structure of the underlying
ring ðR;þ; � Þ.

The Winograd convolution algorithm introduces several 2-
dimensional schemes. Without loss of generality, we focus
on the optimization of the 3� 3-tap finite-impulse-response
(FIR) filter F ð2� 2; 3� 3Þ which produces 2� 2 outputs.
We further validate the techniques on a larger configura-
tion, namely F ð6� 6; 3� 3Þ. Note that Winograd schemes
exhibit a slightly higher memory footprint than traditional
general convolution schemes. In general, the memory usage
for kernel elements is ðK � CÞ � ðR� SÞ. The Winograd
algorithm, however, demands more memory to store the
offline transformed filter elements. The memory require-

ment for F ðm�m; r� rÞ equals ðK � CÞ � ðmþ r� 1Þ2 for a
specialized filter with R ¼ r and S ¼ r. Therefore the expan-
sion factor is 1

r2
ðmþ r� 1Þ2. The general 2-dimensional for-

mula of the F ð2� 2; 3� 3Þ FIR filter can be written as

S ¼ AT
�
GgGT
� �� BTdB

� ��
A ¼ AT

�
U � V

�
A: (2)

Here B, G, A are constant matrices with fixed values
defined in [12], g is a 3� 3 matrix embedding the filter
entries, and d is a 4� 4 sliding block extracted from the
input images. Fig. 1 illustrates the basic workflow of the 2-
dimensional convolutional Winograd algorithm. Computa-
tion is partitioned into four stages.

1) Filter transform: U ¼ GgGT

2) Input transform: V ¼ BTdB
3) Element-wise Multiplication:M ¼ U � V
4) Output transform: S ¼ ATMA
An arithmetic complexity reduction by a factor of 2.25 in

comparison to general convolution in Equation (1) has been
proven in [12]. Nevertheless, a straightforward implementa-
tion of Lavin’s Winograd scheme on ARM processors such
as provided by NNPACK [8] may result in sub-optimal
utilization of resources. The computation of F ð2� 2; 3� 3Þ
can be further accelerated by a factor of up to 2 as shown
in Section 3.1.

Depth-wise convolutions are designed to significantly reduce
computational complexity and the amount of parameters in
recent CNN architectures [13], [14]. In contrast to general con-
volutions, they compute K ¼ C � a output channels from C
input channels without subsequent color channel reduction
where a 	 1 is a channel multiplier. In the following, we dis-
cuss the special case for a ¼ 1 (i.e., K ¼ C), its corresponding
parametrization Gc;u;v is a 3rd degree tensor with signature
“CRS” which stores the filter weights for every input channel.
The computation scheme is shown in

Sc;x;y ¼
XR�1

u¼0

XS�1

v¼0

Dc;xþu;yþv �Gc;u;v ; (3)

where 0 � c < C, 0 � x < H �R, 0 � y < W � S. Note
that the spatial coordinates x and y can be sampled using
potentially non-unit stride 	 1.

The transformations in Equation (2) accept 4� 4 tiles from
the input image and subsequently compute 2� 2 finite-
impulse-responses that are stored in the output image. The
evaluation of Equation (2) involves linear conversions of the
factors U and V and their element-wise multiplication.
Depending on the platform, this might be inefficient if per-
formed in a na€ıve manner. In the following, we discuss the
computational pattern step by step.

Fig. 1. Illustration of the 2-D convolutional Winograd algorithm with
F ð2� 2; 3� 3Þ.
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2.2 Implementation Details of Winograd
Convolutions

In the following, we briefly discuss the workflow of Lavin’s
proposed Winograd algorithm [12] and subsequently dis-
cuss improvements over the original implementation to
enhance performance.

1) During input transform, the input image is proc-
essed in multiple passes. A sliding window of t con-
secutive tiles is transformed simultaneously in one
of those passes. Here t equals 3 for x86_64 CPUs and
32 for CUDA-enabled GPUs.

2) In each pass, the elements generated by the input
transform of each tile must be packed into an inter-
leaved layout using a stride of C �W 0 �H 0 to sup-
port traditional GEMM routines.

3) A batch
�ðU0; V 0Þ; . . . ; ðUi; V iÞ; . . . ; ðUu�1; V u�1Þ� con-

sisting of u matrix pairs Ui and V i of fixed shapes
K � C and C �W 0 �H 0 is processed using
cblas_sgemm routines.

4) During the output transformation phase, the proc-
essed results of the GEMM calls remain in the afore-
mentioned interleaved data layout which may have
to be repacked for later usage. This involves exten-
sive data movement.

The proposed strategy allows for a straightforward
implementation by means of existing and highly-optimized
GEMM routines. Nevertheless, it introduces a number of
issues related to the achievable performance on common
CPU architectures.

a) Both input and the output transforms are memory-
bound resulting in low computational intensity. This
diminishes the benefits of replacing scalar arithmetic
by SIMD instructions.

b) Scattering the data block generated by the input
transform into umatrix pairs using interleaved index-
ing and packing the layout back into continuous
order after GEMM involves enormous memory
movement on both input and output transforms thus
significantly reducing the overall performance.

c) Right factor matrices V i exhibit a long rectangular
shape. See Table 3 for a comprehensive list of used
shapes of 13 convolutional layers in VGG–16. Unfor-
tunately, existing GEMM routines are typically not

optimized for this case. Recent work on optimizing
batched processing of small GEMMs [15] is also not
applicable due to large matrix shapes occurring in
the Winograd algorithm.

To address the aforementioned concerns, we propose a
reformulated Winograd algorithm by embedding a special-
ized variant of inner tensor product computation – namely
TensorGEMM – at its core. Our approach is based on the fol-
lowing three key points:

� Embedding of TensorGEMM: The Winograd algorithm
is reformulated by embedding TensorGEMM at its
core – a memory-aware linear algebra primitive for
the efficient computation of single precision tensor-
valued inner products.

� Reduction of Memory Movement: The tensors are
agglomerate before TensorGEMM is performed
instead of scattering the data block generated by the
input transform into u matrices. This approach
reduces the data movement stride by a factor of u

regardless of the specific processor instructions.
Note that the same strategy can be applied to data
reorganization before the output transform.

� Improvement of TensorGEMM Efficiency: Our Tensor-
GEMM routine is optimized with register blocking
to achieve the maximal compute-to-memory access
ratio. Internal and external packing is further used to
minimize the overhead of data placement incurred
during TensorGEMM.

3 OPTIMIZATION TECHNIQUES

3.1 Expressing Winograd Convolutions in Terms of
TensorGEMM Primitives

Initially, we rewrite Equation (1) in Winograd fashion
according to the coordinate representation of Equation (2):

Sk;d ¼
XC�1

c¼0

AT Uk;c � Vc;d

� �
A

¼ AT
XC�1

c¼0

Uk;c � Vc;d

" #
A ;

(4)

where 0 � k < K, and d 2 ½0;H 0Þ � ½0;W 0Þ is a spatial index
enumerating tiles in the output image. For F ðm�m; r� rÞ,
the number of m�m output tiles along each dimension is
H 0 ¼ dH�rþ1

m e andW 0 ¼ dW�rþ1
m e. ThematrixA is constant and

thus can be safely moved outside the sum to avoid redundant
recomputation of matrix products. As a result, the final output
transformation S ¼ ATMA is only computed once.

The two linear conversions resulting in U and V are the
filter transform and the input transform. The input transform
iterates over output channels K while the filter transform is
independent of the image tiles. Hence, the remaining ele-
ment-wise multiplication takes the major share. Let
Mk;d ¼

PC�1
c¼0 Uk;c � Vc;d be the agglomerated pointwise

products along input color channels then Mi
k;d ¼ ðUi 
 V iÞk;d

denotes the ith entry of a Winograd tile where 0 � i < u

and 
 is the traditional matrix product. Note that
F ðm�m; r� rÞ produces tiles with u ¼ ðmþ r� 1Þ2 ele-
ments resulting in u ¼ 16 entries in case of F ð2� 2; 3� 3Þ.
The coordinate representation Mi

k;d can be reinterpreted

TABLE 3
Shape and Computational Load of VGG-16 Conventional Layers

Layer Name C K H,W H 0 �W 0
F(2x2,3x3)

H 0 �W 0
F(6x6,3x3)

GFLOP

conv1.1 3 64 224 12544 1444 0.17
conv1.2 64 64 224 12544 1444 3.70

conv2.1 64 128 112 3136 361 1.85
conv2.2 128 128 112 3136 361 3.70

conv3.1 128 256 56 784 100 1.85
conv3.2-3.3 256 256 56 784 100 3.70

conv4.1 256 512 28 196 25 1.85
conv4.2-4.3 512 512 28 196 25 3.70

conv5.1-5.3 512 512 14 49 9 0.92
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as plain matrix multiplication over a batch of u factors Ui

and V i :

Mi
k;d ¼

XC�1

c¼0

Ui
k;c � V i

c;d 8i; k; d ; (5)

whereby 0 � k < K, 0 � d < H 0 �W 0 and 0 � i < u. As a
result, element-wise multiplication illustrated in Fig. 2
could be performed using u consecutive calls to GEMM
using matrices of dimensions K � C and C � ðH 0 �W 0Þ.
While this is pleasing in terms of code complexity per-
formance suffers as explained in the issues a), b), and c) in
Section 2.2.

In order to relieve data movement introduced by inter-
leaved data storage before and after u GEMMs, Tensor-
GEMM accommodates a distinct data layout incorporating
u-length tensorswhich inherentlymatch theWinograd trans-
formations. Consequently, many matrix multiplications are
expressed in terms of a single tensor-valued inner product.

Definition of TensorGEMM. Tensors are higher-order rank
generalizations of linear maps storing data over a regular
grid of arbitrary dimension. As an example, rank zero tensors
are scalars, rank one denotes vectors, rank two corresponds
to matrices etc. Inner products of two tensors A and B
with compatible shape can be interpreted as their pointwise
Hadamard product A� B and subsequent sum-reduction
over a set of shared rank identifiers. In this paper, Tensor-
GEMM shall be defined as inner product of two rank three
tensors Ak;c;i and Bc;d;i. Point-wise multiplication of entries
can be accomplished after (virtually) broadcasting the tensors
to their corresponding rank by embeddings Âk;c;d;i ¼ Ak;c;i for
all d and B̂k;c;d;i ¼ Bc;d;i for all k in order to guarantee compati-
ble shapes. As shown before, TensorGEMM can be rewritten
as a cascade of rank two inner products (batched ordinary
matrixmultiplications):

Ck;d;i ¼
X
c

�Â � B̂�
k;c;d;i

¼
X
c

Âk;c;d;i � B̂k;c;d;i

¼
X
c

Ak;c;i � Bc;d;i ¼
X
c

�Ak;c � Bc;d

�
i
¼ �Ck;d�i (6)

In the following, we identify the Winograd index
0 � i < uwith L lanes in vector registers, here u ¼ 16 in case
of F ð2� 2; 3� 3Þ. Hence all additive contributions over C
input color channels can be accumulated in an inner loop

over c in a vector register Ck;d;i� ¼ Ck;d;i� þ Ak;c;i� � Bc;d;i� where
i� ¼ ð0; . . . ; L� 1Þ is a sequence of lane identifiers. If L < u

we have to perform multiple no-warm-up passes. In pass p
where 0 � p < u

L, we accumulate Winograd indices in the
range p � L � i < ðpþ 1Þ � L. Since current ARM architec-
tures feature 128 bit vector registers storing L ¼ 4 single pre-
cision floating-point values, we need p ¼ 4 no-warm-up
passes to compute a total of u ¼ 16 independent contribu-
tions forF ð2� 2; 3� 3Þ. The remaining loops over the output
channel index k, the spatial coordinates d, and the pass iden-
tifier p are accelerated bymeans of multi-threading.

The discussed Winograd reformulation can be adapted
to other architectures by adjusting the parameters u calcu-
lated from F ðm�m; r� rÞ, vector length L, and running
passes p. As an example, F ð6� 6; 3� 3Þ can be realized on
x86_64 CPUs with AVX512 support by setting u ¼ 64,
L ¼ 16, p ¼ 4. Further extensions to half precision (FP16)
and INT8 support on modern hardware accelerators are
conceivable. In this case, we have to multiply the parameter
L by a factor of 2 or 4, respectively. However, we focus on
current ARM architecture throughout the rest of this paper.

3.2 Optimization of TensorGEMM

3.2.1 Register Blocking

TensorGEMM partitions tensors into basic blocks and subse-
quently computes as many results as possible between every
twomemory accesses. Initially, we set up a group of accumu-
lator registers and afterwards load several entries from a col-
umn in A and from a row in B. In a subsequent phase, the
tensors are multiplied and accumulated in registers. When
computation progresses to the right border ofA and the bot-
tom of B, we write back the accumulators. Fig. 3 shows a
schematic view of the described computational pattern.

Let us carry out a compute-to-memory-access ratio
(CMAR) analysis [16]. Let m � n be the number of tensors
loaded each time, we perform 2 �m � n vectorized floating-
point instructions during each iteration. The SIMD vector reg-
ister usage ism forA, n for B, andm � n for the accumulators,
respectively. Let R be the amount of available registers per
core, then the block size should satisfy ðmþ nþm � nÞ � R.
Under this constraint, the CMAR can bemaximized:

CMAR ¼ 2 �m � n
mþ n

:

Note that the CMAR tends to be higher for larger block sizes.
On ARMv8-based architectures with 32 vector registers per

Fig. 2. Upper left: 2-dimensional illustration of Equation (5) where each
element is a vector of length 16. Bottom-right: A corresponding 3-dimen-
sional illustration of F ð2� 2; 3� 3Þ.

Fig. 3. Illustration of the processing order in TensorGEMM on ARM archi-
tectures. Note that, each element in the matrix is a tensor, which maps to
a 128-bit vector register containing 4 floats on ARM-based architectures.
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core, we use 4� 4 blocks which occupy 24 registers yielding
CMAR ¼ 4. Larger blocks either need more registers than
available or are hard to partition. In case of ARMv7a-based
architectures providing only 16 vector registers per core, we
use a smaller block size of 2� 4, which employs 14 vector
registers with a CMAR of 2.3.

Meanwhile, the CMAR for a plain GEMM subroutine can
be larger than the CMAR for TensorGEMM, where the regis-
ter blocks are usually 4� 12 or 8� 8 elements. Plain GEMM
tends to have a higher CMARs owing to larger register
blocks. However, the above analysis ignores the write-back
overhead for the accumulators. Note that TensorGEMM per-
forms L times more arithmetic operations in each iteration
than plain GEMM calls. In the Winograd context where L is
small, TensorGEMM writes back the accumulators signifi-
cantly less often than plain GEMM subroutines. Hence, Ten-
sorGEMMperforms better on stretched rectangular matrices
which typically occur inWinograd schemes.

3.2.2 Memory Layout

As mentioned before, we perform p ¼ 4 no-warm-up passes
to the fixed-length subroutine on ARM architectures to

propagate a convolutional layer of type F ð2� 2; 3� 3Þ.
Each pass computes a part of these tensors, which are
denoted in same color in Fig. 2. We use 4 vectors to store a
4� 4 tile each holding a row. The vectors are subsequently
serialized into an intermediate buffer for repetitive use in
the tensor-valued inner product computations. We have
carefully designed its memory layout which agglomerates
the tensors in order to minimize data movements, while
also ensure high accessing efficiency in the subsequent
TensorGEMM.

As register blocks progress across rows in the matrix, the
access pattern is unsuitable for the processors’ cache hierar-
chy. We have carefully applied packing strategies to the
working arrays such that computation traverses memory in
a contiguous manner (see Fig. 4). In particular, the arrays
are rearranged according to TensorGEMM’s loading order
(see Fig. 3). The filter transformation of the left factor U is
constant during inference. Hence it is packed before compu-
tation at the initialization stage. The input transformation V
(right factor) varies during inference of distinct images.
Hence, we apply a packing strategy in conjunction with
cache blocking. We first load a part of the matrix which
could fit in the last level of the cache, and subsequently

Fig. 4. Illustration of our memory packing strategy. The upper right matrix shows the natural memory layout of input transformation and the subse-
quent loading order in TensorGEMM. The packing strategy straightens the buffer for sequential access in TensorGEMM. Specifically, register blocks
(see Fig. 3) require vectors fromm tiles in V and n tiles in U to be bundled. Here we only illustrate them ¼ 4; n ¼ 4 case. The desired packed memory
layout interleaves adjacentm and n tiles for efficient vector loading, and arranges the vector bundles as they are loaded in TensorGEMM’s innermost
loop, say multiplication and accumulation. The internal packing strategy packs a chunk of data when it is loaded into last level cache by Tensor-
GEMM. We also leverage cache to diminish packing overhead. The external packing strategy skips the original layout of input transformation by writ-
ing data directly in packed order, so as to eliminate the packing overhead in TensorGEMM. External packing is only applied on small images due to
considerable memory writing overhead on large images.
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pack the array into cache. Loop orders are adjusted such
that this array is re-used until no longer needed. This
method is denoted as “internal packing”

The Winograd algorithm’s multi-stage character allows
for the moving of the packing procedure to the input trans-
form phase. Consequently, the input transform instantly
writes its results in packed order, such that TensorGEMM
receives a packed working array from the input transform.
This method shall be denoted as “external packing”.

The efficiency of the two packing approaches depends on
the size of the input images. For large images, the internal
packing method based on cache blocking is superior. The
external packing approach does re-ordering in the input
transform stage prior to TensorGEMM. It is complex to
jointly leverage cache blocking and external packing due to
their occurrences in different Winograd stages. As a conse-
quence, this approach causes significantlymore cachemisses
as it writes a large row-major intermediate buffer by column.
In case input images are small enough to fit into cache, the
writing overhead of the external packing approach increases
onlymarginally, and therefore achieves better performance.

3.2.3 Optimizing Sandwich Products

The input transformation, filter transformation, and output
transformation exhibit a common mathematical form
’A : B 7! C ¼ ’AðBÞ :¼ AT BA where B is sandwiched
between a fixed-value matrix A and its transposed variant.
Multiplying a matrix from the left manipulates rows in con-
trast to right actions which alter columns. As our matrices
are stored in row-major order, left operands can be applied
efficiently. As a result, we have rewritten the transfor-
mations as C ¼ AT ðATBT ÞT ¼ ATBA exploiting fast trans-
position in registers. In case of Winograd convolution,
Equation (2) can be rewritten by exploiting the equality
ðU � V ÞT ¼ UT � V T :

S ¼ AT ðU � V ÞA ¼ AT ðAT ðUT � V T ÞÞT : (7)

According to Equations (6) and (7), we can finally reformu-
late four stages of Winograd algorithm using TensorGEMM:

1) Filter Transform: UT ¼ GðGgÞT
2) Input Transform: V T ¼ BT ðBTdÞT
3) TensorGEMM: ðMT Þi ¼ ðV T Þi � ðUT Þi, 0 � i < u

4) Output Transform: S ¼ AT ðATMT ÞT
Algorithm 1 illustrates the unfolded pseudo-code of the

input transformation in case of F ð2� 2; 3� 3Þ. The output
transformation and filter transformation are implemented
accordingly.

The 8 Neon vector instructions perform 32 floating-point
operations, which is already the theoretical minimum.
Minor overhead is caused by the transposition of 4 registers.

3.3 Non-Winograd Layer optimization based on
Packing and Blocking

With Amdahl’s law, after achieving orders of magnitude
speedup based on fine-tuned optimization of Winograd con-
volutional layers, the time taken to process the remaining
layer types will be non-negligible. In the following, the opti-
mization of two other compute-intensive layers – namely
general and depth-wise convolution will be discussed.

Algorithm 1. The Compact Vectorized Kernel to Com-
pute the input Transformation of F ð2� 2; 3� 3Þ
Data: A 4� 4 block in the input image d
Result: A 4� 4 block in the input transformation V T

Load rows of d into vectors vD0; vD1; vD2; vD3

vW0 ¼ vD0 � vD2;
vW1 ¼ vD1 þ vD2

vW2 ¼ vD2 � vD1;
vW3 ¼ vD3 � vD1

Transpose vW0; vW1; vW2; vW3

vD0 ¼ vW0 � vW2;
vD1 ¼ vW1 þ vW2

vD2 ¼ vW2 � vW1

vD3 ¼ vW3 � vW1

Store vD0; vD1; vD2; vD3 to V T

3.3.1 General Convolution

For general convolutional layers, we apply the im2col
method [17] to stretch the convolution tiles into columns,
and subsequently perform matrix multiplication using
an optimized GEMM subroutine. The stretched input
image exhibits a shape of ðC �R� SÞ � ½ðW �Rþ 1Þ�
ðH � S þ 1Þ�. This introduces an expansion factor of roughly
R� S of the input size, which is a major drawback. Hence,
the im2col subroutine produces noticeable overhead, which
is however compensated by the high performance of the
optimized GEMM routines. Furthermore, this method is
flexible to accommodate a wide variety of convolutional
layers by applying different data reshaping methods.

On the edge devices, the diverse runtime environments
and operating systems complicate performance portability.
Therefore, we develop our own SGEMM subroutine for
ARM CPUs specifically tailored to usual matrix shapes dur-
ing neural network inference. The major optimization tech-
niques are similar to [16] with a minor adaption: the filter
matrix is packed only once at initialization such that we can
save the on-the-fly packing overhead. A CMAR analysis
similar to the TensorGEMM (Section 3.2.1) yields efficient
8� 8 and 4� 8 register block shapes for ARMv8 and
ARMv7-a based architectures, respectively. We also employ
a home-grown thread pool implementation which is porta-
ble across iOS, Android and Linux in case of lacking
OpenMP support.

3.3.2 Depth-Wise Convolution

In the following, we isolate optimization of depth-wise
convolution from general convolution since color channels
are computed independently. Hence the accumulation over
C is skipped. For the Winograd approach, the TensorGEMM
has to update its accumulators quite often, which dwarfs the
advantages of aforementioned optimization approaches.
Note that im2col generates images of shape ðR� SÞ�
½C � ðH �Rþ 1Þ � ðW � S þ 1Þ�. Since R and S are usually
small in modern CNN architectures, current GEMM routines
are unlikely to be efficient considering the effort for reshaping.
Therefore, we take a straightforward approach to vectorize
convolutions directly. We group several convolutional tiles in
lanes of registers, and accumulate multiplications thereby.
Performance is sensitive to the group shape. In the case of
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accelerating 3� 3 depth-wise convolutions on ARMv8 ARM
architectures, we agglomerate 2� 8 tiles together.Weprovide
several alternative implementations to cover most typical
cases. In all other cases it falls back to a specialized general
convolution routine.

3.4 Framework Design and Optimization

FeatherCNN’s layer and parameter definitions are compli-
ant to Caffe [4] in order to guarantee compatibility with pre-
trained networks from the model zoo. In terms of perfor-
mance, we emphasize execution latency. Edge devices are
usually equipped with power-efficient compute units and
memory modules operating at low frequency which results
in limited bandwidth. Hence, FeatherCNN follows three
major principles:

1) The framework should be capable to compactly
invoke compute routines.

2) Memory movement should be minimized consider-
ing bandwidth and power limitations.

3) A self-contained code base which allows for easy
deployment on a variety of platforms.

These principles are enforced by co-designing the frame-
work with the compute-intensive primitives in mind. We
provide our own optimized domain-specific library instead
of using BLAS subroutines such that we can fuse different
layer types at the function level. Layer fusion allows for the
significant reduction of memory accesses especially in case
of memory-bound activation layers that simply scan the
image. For example, Rectified Linear Unit (ReLU) and Bias
layers simply traverse the image, zero negative values, or
add certain offsets. Batch Normalization layers often appear
with subsequent Scale layers to compute affine transforma-
tions. The formulae of such layers do simple arithmetic
with respect to every single element. Therefore, memory
accesses are the major overhead. We agglomerate computa-
tion into a fused layer in order to perform a number of
successive computations within a single memory traversal.
In practice, three layer patterns are fused: Convolution-
Bias-ReLU (CBR), Fully Connected-Bias-ReLU (FBR), and
Batch Normalization-Scale-ReLU (BSR). Layer fusion on a
commonly seen network substructure is illustrated in Fig. 5.

On the implementation level, different convolution types
require distinct approaches to layer fusion. We activate the
output tiles in the Winograd output transformation before
writing them to memory. The accumulators in the GEMM
subroutine of general convolution are activated at the last
pass of accumulation. The depth-wise compute function

can also fuse these computations in a single writing pass.
Please note that layer fusion is hard to realize using third
party BLAS calls since they are forced to write back interme-
diate results before termination.

Our framework scans the network for potentially fusible
layers and combines them subsequently. Hereby, it yields a
more compact network topology. As an example, we can
reduce ResNet-50 from 229 layers to 127 layers and Mobile-
Net–V1 from 111 layers to 57 layers by fusing all ReLU and
Scale layers. Even though these layers have small computa-
tional load, layer fusion can significantly improve thread
scalability.

4 PERFORMANCE EVALUATION

FeatherCNN is a lightweight self-contained framework
implemented in C++, ARM NEON instructions, and
OpenMP/POSIX Threads. FeatherCNN currently supports
15 layer types with carefully optimized and/or fused com-
pute kernels. Most commonly used neural networks can be
transformed and executed by FeatherCNN to provide real-
time inference computation with high efficiency. It can be
easily deployed on a wide range of edge devices, and is por-
table to a variety of operating systems and C++ compilers.
In the following, FeatherCNN’s performance is evaluated
using a representative selection of neural networks and
hardware devices.

4.1 Experimental Setup

FeatherCNN’s performance has been assessed on twomobile
devices, two ARM servers and an embedded development
board. Regarding mobile devices, we have tested a Samsung
Galaxy S8 and an Apple iPhone 7 plus. The Galaxy S8 is
equipped with an octa-core Qualcomm Snapdragon 835
processor and 4GB memory. The iPhone 7 plus is powered
by a quad-core A10 Fusion processor featuring two Apple-
customized performance cores and two efficient cores. The
memory capacity is limited to 2GB. The ARM server manu-
factured by Huawei exhibits two CPU sockets each housing
a 32-core Cortex-A72 system on chip (SOC). Regarding the
SOC, every eight cores are connected with a ring. The 4 core
groups are interconnectedwith an on-chip network. Another
platform, Phytium FT1500A, integrates only a single CPU
socket powered by a 16-core FTC660 chip with support for
ARMv8 instructions, and is running a 64-bit Kylin Linux.
Finally, the developer board Firefly-RK3399 is equipped
with 2 Cortex-A72 performance cores, 4 Cortex-A53 efficient
cores and 4GBmainmemory.

The detailed hardware specifications are listed in Table 4.
VGG-16, GoogLeNet, ResNet-50, and MobileNet–V1 are
selected from Table 2 as candidates for subsequent perfor-
mance evaluation.

4.2 Step-Wise Evaluation

In order to highlight the benefits of our optimization techni-
ques, performance measures are evaluated in terms of three
aspects:

1) Runtimes for Winograd convolutions are assessed
for different layer configurations and decomposed
into input transform, TensorGEMM, and output trans-
form contributions.

Fig. 5. Illustration of layer fusion with respect to CBR, FBR, and BSR
patterns.
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2) A side-by-side evaluation of achieved performance
(in terms of GFLOPS) for 3� 3 convolutional layers
processed with General Convolution and the Winograd
approach.

3) Measuring the impact of layer fusion.
Regarding the first two aspects, we have tested convolu-

tional layers of VGG–16 with respect to the shapes and
computational loads listed in Table 3. The dimensions of Ten-
sorGEMM multipliers are ðK � uÞ � C and C � ðH 0 �W 0 � uÞ
(see Fig. 4). The VGG–16’s convolutional layers cover a wide
variety of representative shapes generally composed of two
typical patterns: large images with relatively few channels
and small images with more channels. Similar shapes also
appears in ResNet, DenseNet, SqueezeNet, and many other
frequently used neural network architectures. Hence, we
have decided to use VGG–16 for testing representative Wino-
grad convolution evaluation. In order to investigate the
impact of layer fusion, we have testedMobileNet–V1, GoogLe-
Net, and ResNet–50 covering a variety of neural network
architectures.

We investigate the performance of our single-threaded
Winograd implementation on an iPhone 7 plus and a
Galaxy S8 by separately evaluating the External Packing
and the Internal Packing strategy. Results are averaged over
20 runs and illustrated in Fig. 6. For large images (conv1.2-
conv2.2), the input transformation consumes a considerable
portion of time. The internal packing strategy outperforms
external packing due to its more efficient memory access
pattern. TensorGEMM exhibits similar performance due to
the properly applied cache blocking approach. In case of
small images (conv4.1-5.3), input/output transformations
are performed in negligible time. Hence, the processing of

TensorGEMM dominates the compute time. External pack-
ing performs better in case the image buffer fits into cache.
Note that the two devices produce diametrical results for
the conv4.1-4.3 layers. This can be explained by the fact that
the iPhone 7 plus is equipped with a larger cache which is
able to accommodate the respective images. TensorGEMM
consequently benefits from the reduced overhead by virtue
of external packing.

Regarding absolute performance, we have evaluated the
convolutional layers listed in Table 3 using GEMM and the
Winograd approach on an iPhone 7 plus and a Galaxy S8.
Performance is measured in terms of GFLOPS. To ensure a
fair comparison to plain GEMM routines, we evaluate
Winograd’s performance in terms of “effective” perfor-
mance to mirror both implementation and algorithmic
speedups, which may yield a number even higher than the
theoretical peak performance. The effective performance is
calculated by dividing GFLOPs of the standard algorithm
as listed in last column of Table 3 by the compute time. The
input transformation, TensorGEMM, and the output trans-
formation are included in the compute time, while the filter
transformation is excluded as it is performed at
initialization.

Regarding the GEMM approach, we exclude the im2col
time to reflect bare-metal performance. Except for the
conv1.1 layer, the FeatherCNN Winograd F ð2� 2; 3� 3Þ
scheme outperforms its own GEMM implementation
between 21.5 and 80.6 percent on an iPhone 7 plus and
between 50.4 and 100.3 percent on a Galaxy S8. The small
input channel number of C ¼ 3 in the conv1.1 layer renders
TensorGEMM less efficient in this case. Regarding the
Winograd F ð6� 6; 3� 3Þ scheme, we compare to

TABLE 4
The Detailed Hardware Specifications of our Test Platforms

Device Processor #CPUs@Clock Speed CPU Arch. Memory OS SOC Power

Samsung Galaxy S8 Snapdragon 835 4@2.45+ 4@1.90GHz Kryo 4 GB Android 7.0 5W
Vivo IQOO Snapdragon 855 1@2.84 + 3@2.42+ 4@1.80GHz Kryo 8 GB Android 9.0 5W
Xiaomi 8SE Snapdragon 710 2@2.2 + 6@1.70Ghz Kryo 4 GB Android 8.0 5W
Huawei Mate 10 Kirin 970 4@2.4 + 4@1.80GHz Cortex 4 GB Android 7.0 5W
Apple iPhone 7 plus A10 Fusion 2@2.34 + 2@1.05GHz Hurricane 2 GB iOS 11.1 5W
Huawei D05 Server Hi1616 2 � 32@2.40GHz Cortex 256 GB Ubuntu 16.04 > 100W

Fig. 6. Decomposed Winograd F(2�2; 3�3) compute time (in milliseconds) for convolutional layers in VGG-16. IP denotes “Internal Packing” and EP
refers to “External Packing”.
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NNPACK, which implements the approach proposed in [12]
on ARM architectures. On an iPhone 7 plus and Galaxy S8,
FeatherCNNoutperformsNNPACKby 36 to 183 percent and
42 to 212 percentwith respect to distinct layer configurations.
FeatherCNN is the more stable performer across different
layer settings. This can be explained by the high efficiency
of TensorGEMM across various neural network dimensions,
as well as unit-stride memory access pattern for the
transformations.

We have further compared GEMM performance to Eigen
and the Apple Accelerate Framework (AF). Our GEMM
implementation achieves an average speedup of 4.85 over
Eigen and is 15 percent faster than Apple AF on an iPhone 7
plus, and further outperforms Eigen by 39 percent on a Gal-
axy S8. The absence of OpenMP on iOS notably diminishes
Eigen’s performance. The remaining speedups are mainly
attributed to our offline packing strategy and tuned cache
block parameters for stretched rectangular matrices.

Compute efficiency is measured as the ratio of achieved
average performance over nominal peak performance. The

efficiency is limited by the stretched rectangularmatrix shape.
FeatherCNN achieves an average efficiency of 68.06 percent
whereas Apple AF achieves 60.09 percent. Regarding the
Galaxy S8, the nominal peak performance is 2:45 GHz�
4 (cores)� 4 (SIMD)� 2 (FMA) ops ¼ 78:4 GFLOPS, which
yields an average efficiency of 34.3 and 24.9 percent for Feath-
erCNN and Eigen, respectively. However, a third party bench-
mark tool, the Geekbench4, reveals a multi-threaded SGEMM
performance of 40.5 GFLOPS [18]. From this perspective,
FeatherCNN and Eigen achieve 66.5 and 52.2 percent of the
actual peak performance.

Fig. 8 depicts the experimental results for a Galaxy S8
using layer fusion. The amount of layers have been reduced
significantly: we fuse 111 layers into 57 layers for Mobile-
Net–V1, 229 layers into 127 layers for ResNet-50, 143 layers
into 133 layers for GoogLeNet, and 38 layers into 25 layers
for VGG–16. The fused layer types are ReLU, Batch Normali-
zation and Scale. In Fig. 8, the bars represents execution
times with respect to amount of threads and neural network
configurations. The lines denote the acceleration ratio after
enabling layer fusion. Note that multi-threading may bene-
fit more in case of activated layer fusion, due to the reduced
memory bandwidth.

4.3 Integral Evaluation

Finally we assess FeatherCNN’s performance on aforemen-
tioned network topologies and compare it to performance
of competing state-of-the-art libraries for neural inference.
Experiments are conducted on the Huawei ARM Server
(see Table 4) as the major test platform. The ARM-based
servers integrate many cores on a single chip to remedy
peak performance. With this regard, we emphasis on scal-
ability during evaluation.

We perform a strong scaling test using MobileNet–V1
and VGG–16, respectively. The former one has small model
size by virtue of depth-wise convolutional layers while the
latter one exhibits significantly higher computational com-
plexity. All convolutional layers in VGG–16 can benefit
from Winograd acceleration, while none of the layers in
MobileNet–V1 employs 3� 3 convolutions, and therefore
relies on general convolution and depth-wise convolutional

Fig. 8. Runtime comparison and percentage of runtime reduction when
using layer fusion for different CNNs. Bars on runtime correspond to the
left vertical axis. The lines on acceleration ratio correspond to the right
vertical axis. FeatherCNN runtime with (red bar, denoted as b) and with-
out layer fusion (blue bar, denoted as a) are tested on three networks.
Acceleration ratio is the percentage of speedup delivered by layer fusion:
a�b
a

� 100%. The Winograd scheme is F ð2� 2; 3� 3Þ.

Fig. 7. VGG-16 Layerwise Performance on Mobile Phones.
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layer types. Figs. 9 and 10 show the results. In Fig. 9, Feath-
erCNN scales up to 16 threads for MobileNet–V1 before
being memory bandwidth bound. The speedup over Caffe2
is 3.3 in the case of 16 threads. The minimum inference time
is 25 ms. The performance improvements are mainly due to
layer fusion and optimization of depth-wise convolutions.
Fig. 9b reveals that the many-thread case incurs intensive
memory contention in Batch Normalization layers causing a
significant performance degradation. Performance can be
further improved by assigning only a limited number of
threads in case of memory intensive layers.

Regarding the VGG–16 neural network, Fig. 10 reveals
that the F ð2� 2; 3� 3Þ scheme of FeatherCNN scales up to
64 cores, while the F ð6� 6; 3� 3Þ scheme saturates beyond
8 threads. This is induced by two matters. One is that
F ð6� 6; 3� 3Þ has a memory expansion factor of 7.1 (1.8 for
F ð2� 2; 3� 3Þ) thus demanding higher memory band-
width. The other is that F ð6� 6; 3� 3Þ generates much nar-
rower matrix shapes on last three layers in VGG16 and
therefore is incapable to scale over many cores. This result
shows that scaling is dependent on different Winograd
schemes. Fig. 10b also indicates that memory bounded
fully-connected layers are in-negligible limiting factor in
terms of scalablity.

Inference time for Inception–V3, VGG–16 and MobileNet–
V1 on four Android mobile phones are listed in Table 5. For
the evaluation on ARM CPU, Qualcomm SNPE, Tensorflow
Lite, and FeatherCNN are tested with all high-performance
cores. GPUs andDSP are testedwith SNPE only. FeatherCNN
is configured to enable F ð6� 6; 3� 3Þ schemes. It outper-
forms TensorFlow Lite by a factor of 2 to 4 on Inception–V3
andMobileNet–V1, and by a factor of 4 to 6 on VGG16 due to
our Reformulated Winograd acceleration. SNPE can only run
on Snapdragon series SOC chips, thus no data is collected for
kirin 970. OnARMCPUs, SNPE performances better onmod-
els with winograd operations, but worse on models without
Winograd operations, comparedwith TensorFlow Lite. SNPE
has been integratedwith approximately two times faster GPU
performance, and over 5 times faster DSP performance
(using “INT8” quantized model) on Inception–V3 compared
with FeatherCNN. However SNPE performances worse on
MobileNet–V1 with DSP, and incompatible with many mod-
els and devices including some Snapdragon SOC chips. To
make a comparison with TVM [19], We cite TVM’s latest per-
formance results on Kirin 970 from [20] for comparison. It
takes TVM 444ms, 41ms and 486ms to finish the inference
computation on Inception–V3, MobileNet–V1 and VGG16.
According to the figures in Table 5, FeatherCNN with

Fig. 9. Scalability evaluation on MobileNet against state of art libraries.

Fig. 10. Scalability evaluation on VGG-16 against state-of-art libraries.
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Reformulated Winograd F ð6� 6; 3� 3Þ algorithm alone
takes 312ms, 57ms and 512ms respectively. FeatherCNN and
TVM have presented competitive performance on these three
models but with totally different strategies. FeatherCNN
explores Winograd optimization and its implementation on
ARM CPU’s memory hierarchy without considering other
methods such as IM2COL, and Direct Convolution. TVM is
pursing highest performance by searching a best configura-
tion on existing algorithms with a tensor-like representation
andML-based scheduling. The two work have their own sell-
ing points and are complementary to each other.

We further want to highlight FeatherCNN’s compact
memory consumption compared to other frameworks. For
the VGG–16 inference test, the weights alone demand over
500MB of memory space. FeatherCNN using GEMM needs
770MB, with Winograd F(2� 2, 3� 3) it needs 845MB, and
using Winograd F(6� 6, 3� 3) it needs 1023MB. The Wino-
grad scheme consumes more memory due to the larger ker-
nel transformation matrix UT , which is processed at
initialization and then resides in memory throughout com-
putation. Caffe with OpenBLAS backend using GEMM
requires 955MB. Caffe2 with Eigen backend using GEMM
consumes 756MB, and with NNPACK backend using Wino-
grad-F(6� 6, 3� 3) occupies an excessive 1652MB. Our
advantage can be explained carefully managed allocations
and the reuse of intermediate buffers across different layers.
The low memory footprint of FeatherCNN thus allows its
deployment on many memory-limit embedded devices.

5 RELATED WORK

Previous work on accelerating deep neural networks on
mobile devices can be grouped into three classes: model
compression, algorithm optimization, and acceleration of
inference computation using specialized hardware.

Model compression is the primary way to reduce storage
space and computational costs [21], [22], [23], [24], [25].

Deep compression [25] reports impressive compression
rates on AlexNet [26] and VGGNet [27] by pruning weights
and subsequent retraining without decreasing the overall
accuracy. However, pruning parameters does not necessar-
ily reduce the computation time since the majority of
removed parameters stem from the fully connected layers
where the computational cost is low. As an example, the
fully connected layers of VGG–16 occupy 95 percent of the
total parameters but only contribute less than 1 percent of
the overall floating point operations (FLOP). They demon-
strate that the convolutional layers can also be compressed
and accelerated with sparse BLAS libraries or even special-
ized hardware. But 10 percent of sparsity can result in lim-
ited or no speedup with modern sparse libraries for CNN
computation [28]. Instead of compressing existing models,
researchers started to design new lightweight models such
as SqueezeNet [29], Darknet [30] and MobileNets [13].
Those topologies inherently have less parameters at the cost
of higher network complexity and minor accuracy loss.

Optimization of algorithms is another important strategy
to accelerate CNNs. Convolutions can be transformed into
matrix multiplication using GEMM [17], pointwise multipli-
cation after applying FFT [11], and Winograd schemes [12].
However, GEMM introduces a larger memory footprint,
FFT is beneficial for kernels larger than 7� 7, and Winograd
is fast but limited to 3� 3 kernels. Efficient algorithms are
currently implemented and optimized only for GPUs on
servers with high memory bandwidth. Approximate algo-
rithms without retraining include SVD [31], bit-compression
or fixed-point implementation [32]. Network pruning [33],
[34] can be used to pursue higher computational speed but
may induce prediction loss.

Since only a limited number of target algorithms is avail-
able for inference of CNNs, hardware acceleration is used
to pursue higher compute performance and better energy
efficiency. These algorithms can be executed on multicore
CPUs using SIMD [35], on GPUs [17], [36], on FPGAs [37],
and on ASICs [1], [38]. Mobile devices, however, are rarely
equipped with these specialized hardware devices. Those
who feature dedicated hardware, however, tend to be sig-
nificantly more expensive. Currently, mainstream libraries
start to support ARM-CPUs. NNPACK [8] has integrated
GEMM, FFT, and Winograd algorithms, they also imple-
ment these algorithms with NEON instructions but in a
straightforward manner based on the na€ıve evaluation of
the mathematical equations in [12]. Thus, its performance
on Caffe2 is worse than Eigen [7] in some cases. Other
libraries such as OpenBLAS [5], Eigen [7], or Atlas [39] can
be used to support GEMM algorithms. However, there is
still space for performance improvements on ARM-based
multi-core and many-core architectures.

There are recent advances in batched GEMM calculations
and tensor contractions [40], [41], [42], [43], [44], [45].
Batched GEMM mainly focus on the case of multiplying
hundreds of small matrices of shapes in the range from
2� 2 to 32� 32 [40], [41]. Previous work aims to fully
exploit vectorization and avoid launch overhead of multiple
small GEMMs, batching larger matrix straightforwardly
however will result in lower performance [43]. Regarding
the optimization methods, they range from interleaved
memory layout on Intel CPUs [40] to autotuning over

TABLE 5
Collected Experimental Data Comparing ARM CPUs, GPUs,

and Co-Processors on Vivo IROO (sdm855), Vivo X20
(sdm660), Xiaomi 8SE (sdm710) and Huawei Mate 10

(Kirin970)

model soc chip CPU GPU DSP

SNPE TFlite Feather SNPE SNPE

Inception–V3 sdm855 620.26 686.55 134.65 73.85 17.67
sdm835 1023.92 681.08 290.16 115.84 62.03
sdm710 764.67 1000.35 467.85 230.55
kirin970 683.634 312.26

VGG16 sdm855 864.29 1088.29 261.74 36.68
sdm835 1998.67 1815.69 454.82 145.85
sdm710 1901.45 2525.11 634.47
kirin970 3034.60 512.65

MobileNet–V1 sdm855 493.59 112.63 27.33 27.61
sdm835 819.95 123.89 50.28 39.23
sdm710 686.97 104.26 55.90 88.29
kirin970 156.98 57.62

The inference engines selected for comparison include Qualcomm SNPE, Goo-
gle TFLite, and Tencent FeatherCNN. The evaluated network models are
Inception–V3, MobileNet–V1, and VGG16.
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existing GEMM kernels on GPUs [42]. Interleaved memory
layouts are effective for small matrices, but will degrade
performance on large matrices when overloading the cache.
Tensor contraction is a memory bounded kernel [44], [45].
Embedding it after (and before) the Winograd’s input (and
output) transforms will introduces extra overhead and drag
down the computational intensity of the whole phase. Thus,
an integrated optimization over all four stages of the Wino-
grad algorithm – such as the one proposed in this paper – is
crucial to boost its performance on target architectures.

6 CONCLUSION

The ever increasing prevalence of Deep Learning-driven
applications create an enormous demand for efficient and
energy-aware inference solutions on ubiquitous mobile
devices. Common approaches for the efficient evaluation of
convolutional layers such as Winograd convolution and
depth-wise convolution have been ported to a wide variety
of platforms including current ARM CPUs. Straightforward
reference implementations such as NNPACK [8], however,
do not fully exploit the compute capabilities of employed
hardware.

In this paper, we present a fast and lightweight inference
library called FeatherCNN specifically taylored to the charac-
teristics of current ARM architectures. We propose a high
performance linear algebra primitive – namely Tensor-
GEMM – in order to significantly speed-up the processing
of Winograd-style convolutional layers. The proposed opti-
mizations include both algorithmic improvements and
bare-metal tuning to allow for efficient SIMD processing
and reduction of memory movements. Sophisticated mem-
ory blocking and packing approaches are applied to further
improve performance. In addition, memory-intensive layers
are specifically optimized by means of layer fusion and vec-
torization in order to improve thread scalability.

Driven by the rapid development of ARM-based architec-
tures including many-core servers and high performance
mobile processors, FeatherCNN may be even deployed in
case of heavyweight full-precision network topologies, in the
foreseeable future. Both the algorithmic optimization and tun-
ing of vectorization is independent of the given instruction
set, and therefore could be further extended to other architec-
tures such as x86_64CPUs andCUDA-enabledGPUs.
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